distribute_transpiler.py 49.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18 19

import distributed_splitter as splitter
20
from .. import core
T
typhoonzero 已提交
21 22 23
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
24 25 26 27

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
28 29


T
typhoonzero 已提交
30 31 32 33 34 35
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
36

T
typhoonzero 已提交
37 38
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
39 40


41
class UnionFind(object):
42
    """ Union-find data structure.
43

44
    Union-find is a data structure that keeps track of a set of elements partitioned
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


92 93 94 95
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
96 97 98 99 100
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
101
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
102 103
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
104

T
typhoonzero 已提交
105 106
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
107 108
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
109 110
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
129
        # update split_count after aligning
T
typhoonzero 已提交
130 131 132 133 134 135 136 137 138
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


139 140 141 142 143 144 145 146 147 148
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


T
done  
typhoonzero 已提交
149 150
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
151
                  trainer_id,
T
done  
typhoonzero 已提交
152 153 154
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Q
tmp  
qiaolongfei 已提交
155 156
                  split_method=splitter.round_robin,
                  sync_mode=True):
T
done  
typhoonzero 已提交
157
        """
T
typhoonzero 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
195
        """
T
typhoonzero 已提交
196
        assert (callable(split_method))
T
done  
typhoonzero 已提交
197 198
        if program is None:
            program = default_main_program()
199 200
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
201
        self.sync_mode = sync_mode
T
typhoonzero 已提交
202 203 204 205
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
206
        pserver_endpoints = pservers.split(",")
207
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
208
        self.optimize_ops, params_grads = self._get_optimize_pass()
209

T
tangwei12 已提交
210 211 212 213 214
        # is_chief (no.0 triner) for checkpoint
        # the no.0 trainer will save all variables and its own reader offset to checkpoint
        # other trianers will save its own reader offset to checkpoint
        self.is_chief = trainer_id == 0

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
236

237 238
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
239 240 241 242 243 244 245 246
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
247 248 249 250 251 252 253

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
254
                if grad.name != grad_var_name(self.table_name)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
271 272
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
273 274
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
275
        grad_var_mapping = self._append_split_op(program, grad_blocks)
276 277 278 279
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
280
        send_inputs = []
T
typhoonzero 已提交
281
        send_outputs = []
T
typhoonzero 已提交
282 283 284 285 286 287
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
288 289
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
290
        eplist = split_method(send_inputs, pserver_endpoints)
291
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
292 293 294 295 296 297 298 299
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
300

T
typhoonzero 已提交
301
        rpc_client_var = program.global_block().create_var(
302
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
303
            persistable=True,
T
typhoonzero 已提交
304
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
305

306
        # create send_op
T
typhoonzero 已提交
307
        program.global_block().append_op(
T
typhoonzero 已提交
308 309
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
310 311
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
Q
qiaolongfei 已提交
312 313 314 315 316
            attrs={
                "endpoints": pserver_endpoints,
                "epmap": eplist,
                "sync_mode": self.sync_mode
            })
T
tangwei12 已提交
317

T
tangwei12 已提交
318 319 320 321 322 323 324 325 326 327
        serial_var = program.global_block().create_var(
            name="SERIAL_NUMBER",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

        save_vars = []
        for var in self.origin_program.list_vars():
            if self.is_persistable(var):
                save_vars.append(var.name)

T
tangwei12 已提交
328 329
        program.global_block().append_op(
            type="checkpoint_save",
T
tangwei12 已提交
330 331 332
            inputs={"X": save_vars},
            outputs={"Serial": serial_var},
            attrs={"overwrite": False,
T
tangwei12 已提交
333
                   "dir": "/workspace/ckpt/"})
T
tangwei12 已提交
334

335
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
336
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
337 338
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
339
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
340
            program.global_block().append_op(
T
typhoonzero 已提交
341
                type="concat",
T
typhoonzero 已提交
342
                inputs={"X": splited_var},
T
typhoonzero 已提交
343
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
344
                attrs={"axis": 0})
T
typhoonzero 已提交
345

346 347 348 349 350 351
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
352 353
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
354
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
355
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
356 357
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
358 359 360 361

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
362
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
363 364 365 366 367 368
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
369
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
370 371 372 373 374 375 376 377
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
378 379 380 381 382 383

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
384 385 386 387 388 389 390 391 392
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
393
            if self.sync_mode and self.trainer_num > 1:
394
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
395 396 397 398 399 400 401 402 403
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
404

Q
qiaolongfei 已提交
405
        # step 3
406
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
407 408 409
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
410
        # step 3.2
T
typhoonzero 已提交
411 412 413 414 415 416
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
417
        # step 3.3
T
typhoonzero 已提交
418
        # Iterate through the ops, and if an op and the optimize ops
419
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
420
        # append it into the sub program.
T
typhoonzero 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
437 438
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
439

Q
qiaolongfei 已提交
440
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
441
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
442
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
T
typhoonzero 已提交
443 444 445 446
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

447
        # append lr decay ops to the child block if exists
448 449
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
450 451
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
452
            for _, op in enumerate(lr_ops):
453
                self._append_pserver_non_opt_ops(lr_decay_block, op)
454

T
typhoonzero 已提交
455
        # append op to the current block
Q
qiaolongfei 已提交
456
        grad_to_block_id = []
Q
qiaolongfei 已提交
457
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
458
        for idx, opt_op in enumerate(opt_op_on_pserver):
459
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
460 461
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
462
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
463
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
464 465

        # append global ops
466
        if global_ops:
Q
qiaolongfei 已提交
467 468 469
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
470 471
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
472 473 474 475 476 477 478 479 480

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

481 482 483 484
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
485
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
486
                pserver_index, pserver_program, pre_block_idx)
487
            prefetch_block = self._create_prefetch_block(
488
                pserver_index, pserver_program, table_opt_block)
489 490 491 492 493 494 495 496 497

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
498 499 500 501 502 503
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
504
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
505
                "endpoint": endpoint,
506
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
507 508
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
T
tangwei12 已提交
509
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
510
            })
511

T
typhoonzero 已提交
512 513 514
        pserver_program.sync_with_cpp()
        return pserver_program

T
tangwei12 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    def is_persistable(self, var):
        if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.RAW :
            return False
        return var.persistable

    def get_train_startup_program(self, checkpoint_load_dir=None):
        startup_prog = default_startup_program()

        if not checkpoint_load_dir:
            return startup_prog

        for var in startup_prog.list_vars():
            if self.is_persistable(var):
                print("var: %s" % var.name)

        startup_prog.global_block().append_op(
            type="checkpoint_load", attrs={"dir": checkpoint_load_dir})
        return startup_prog

T
typhoonzero 已提交
536 537 538 539 540 541 542
    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
543
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
557
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
659
                    delete_ops(program.global_block(), [op])
660 661 662 663 664 665 666 667
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
668
        table_grad_name = grad_var_name(self.table_name)
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
707
            type="lookup_sparse_table",
708 709 710 711 712 713 714 715 716 717 718
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
719
                                     pre_block_idx):
720 721 722 723 724 725 726 727 728 729 730
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
731 732 733 734 735 736 737 738
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
739 740
        grad_var = _clone_var(
            pserver_program.global_block(),
T
typhoonzero 已提交
741
            self.origin_program.global_block().vars[grad_var_name(
742 743 744 745 746 747 748 749
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
750
        table_opt_block = pserver_program.create_block(pre_block_idx)
751 752 753
        # only support sgd now
        assert table_opt_op.type == "sgd"

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

787 788
        return table_opt_block

T
typhoonzero 已提交
789 790 791 792 793 794
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
795
        Create vars for each split.
T
typhoonzero 已提交
796 797
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
798
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
799
        """
T
typhoonzero 已提交
800
        block_map = dict()
T
typhoonzero 已提交
801
        var_mapping = dict()
T
typhoonzero 已提交
802 803 804 805 806 807
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
808
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
809
            if len(splited) == 1:
810
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
811 812 813 814 815 816 817 818
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
819
                continue
T
typhoonzero 已提交
820 821

            var_mapping[varname] = []
T
typhoonzero 已提交
822 823 824 825
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
826

T
typhoonzero 已提交
827
            for i, block in enumerate(splited):
T
typhoonzero 已提交
828
                size = block[1]
T
typhoonzero 已提交
829 830 831 832
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
833
                new_var_name = ""
834
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
835 836 837 838 839
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
840
                var = program.global_block().create_var(
T
typhoonzero 已提交
841 842
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
843
                    dtype=orig_var.dtype,
844
                    type=orig_var.type,
T
typhoonzero 已提交
845
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
846
                var_mapping[varname].append(var)
T
typhoonzero 已提交
847
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
848
        return var_mapping
T
done  
typhoonzero 已提交
849

850 851 852 853 854 855 856 857 858 859 860
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
861 862 863 864 865 866 867
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
868
            persistable=persistable)
T
done  
typhoonzero 已提交
869

T
typhoonzero 已提交
870
    def _append_split_op(self, program, gradblocks):
871
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
872
        add_suffix = False
873
        if self.trainer_num > 1:
T
typhoonzero 已提交
874
            add_suffix = True
T
typhoonzero 已提交
875
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
876
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
877
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
878 879
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
880
                continue
T
typhoonzero 已提交
881
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
882
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
883 884 885 886 887 888 889 890
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
891
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
892 893 894 895
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
T
typhoonzero 已提交
896
                    type="split_byref",
897 898 899 900 901 902 903
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
904
        return var_mapping
T
done  
typhoonzero 已提交
905

T
typhoonzero 已提交
906 907 908 909
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
910
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
933 934 935 936 937
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
938 939
        else:
            orig_var_name = varname
T
typhoonzero 已提交
940 941
        return orig_var_name

942
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
943
                            grad_to_block_id, origin_program):
944
        program = optimize_block.program
T
typhoonzero 已提交
945
        pserver_block = program.global_block()
T
typhoonzero 已提交
946
        new_inputs = dict()
T
typhoonzero 已提交
947 948
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
949
        for key in opt_op.input_names:
T
typhoonzero 已提交
950 951 952
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
953
                    if same_or_split_var(
T
typhoonzero 已提交
954 955
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
956 957 958 959 960 961
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
962 963
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
964 965
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
966
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
967
                    vars2merge = []
968
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
969 970 971 972
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

973
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
974 975 976
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
977
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
978 979 980 981 982
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
983
                            attrs={"scale": 1.0 / float(self.trainer_num)})
984

T
typhoonzero 已提交
985 986 987 988 989
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
990
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
991 992 993 994
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
995
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
996
                    name=param_block.name,
T
typhoonzero 已提交
997
                    persistable=True,
T
typhoonzero 已提交
998 999 1000
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1001
            elif key == "LearningRate":
1002
                # learning rate variable has already be created by non-optimize op,
1003
                # don't create it once again.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1015

T
typhoonzero 已提交
1016
        for key in opt_op.input_names:
1017 1018
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1019
                continue
1020
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1021 1022 1023 1024
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1025
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1026 1027 1028 1029 1030
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1031

1032
        # change output's ParamOut variable
1033 1034
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1035
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1036

1037
        optimize_block.append_op(
T
typhoonzero 已提交
1038 1039
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1040
            outputs=outputs,
T
typhoonzero 已提交
1041 1042
            attrs=opt_op.attrs)

1043 1044
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1045
        # Append the ops for parameters that do not need to be optimized/updated
1046 1047
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1048 1049 1050 1051
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1052
            for var in varlist:
1053 1054
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1055 1056 1057 1058 1059
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1060 1061
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1062

1063 1064 1065 1066 1067
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1068
                program.global_block().clone_variable(var)
1069

1070
        optimize_block.append_op(
T
typhoonzero 已提交
1071
            type=opt_op.type,
T
typhoonzero 已提交
1072 1073
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1074 1075
            attrs=opt_op.attrs)

1076 1077 1078 1079
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1093 1094
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1095
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1096
        op2_output_names = op2.desc.output_arg_names()
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1116
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1117 1118
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1119 1120 1121 1122 1123 1124 1125
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1126
        if op.input("Param")[0] in param_names:
1127 1128 1129
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1130
                param = op.input("Param")[0]
T
typhoonzero 已提交
1131
                if same_or_split_var(n, param) and n != param:
1132 1133 1134
                    return True
            return False

T
typhoonzero 已提交
1135
    def _get_input_map_from_op(self, varmap, op):
1136
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1149
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1171
        block = self.origin_program.global_block()
1172 1173 1174 1175 1176
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1190 1191
                    # we only need to append op for once
                    break
1192
        return lr_ops
Y
Yancey1989 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

    def _get_optimize_pass(self):
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1205 1206
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1207 1208 1209
            else:
                pass
        return opt_ops, params_grads
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False