test_primapi.py 33.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import typing
import unittest

18 19 20
import autograd
import autograd.numpy as anp
import autograd.scipy as ascipy
21
import config
22
import numpy as np
23
import utils
24 25

import paddle
26 27 28 29
from paddle.incubate.autograd import primx


@utils.place(config.DEVICES)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
@utils.parameterize(
    (utils.TEST_CASE_NAME, 'fun', 'xs', 'dtype'),
    (
        (
            'uniform_random',
            lambda: paddle.uniform(
                [1, 2, 3], dtype='float32', min=0, max=1.0, seed=1
            ),
            (),
            'int32',
        ),
        (
            'sigmoid',
            paddle.nn.functional.sigmoid,
            (
                np.random.rand(
                    5,
                ),
            ),
            'float32',
        ),
    ),
)
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class TestFowardApi(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.xs = tuple(x.astype(cls.dtype) for x in cls.xs)

    def setUp(self):
        paddle.enable_static()
        paddle.incubate.autograd.enable_prim()

    def tearDown(self):
        paddle.incubate.autograd.disable_prim()
        paddle.disable_static()

    def test_grad(self):
        def expected():
            paddle.incubate.autograd.disable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs = utils.gen_static_inputs_and_feed(
73 74
                    self.xs, stop_gradient=False
                )
75 76 77 78 79 80 81 82 83 84 85 86 87
                out = self.fun(*static_xs)
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=out)
            paddle.incubate.autograd.enable_prim()
            return out

        def actual():
            paddle.incubate.autograd.enable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs = utils.gen_static_inputs_and_feed(
88 89
                    self.xs, stop_gradient=False
                )
90 91 92 93 94 95 96 97 98 99 100 101 102
                out = self.fun(*static_xs)
                primx.orig2prim(mp.block(0))
                primx.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=out)
            paddle.incubate.autograd.disable_prim()
            return out

        expected = expected()
        actual = actual()
        self.assertEqual(type(actual), type(expected))
        for i, j in zip(actual, expected):
C
Charles-hit 已提交
103
            np.testing.assert_allclose(i, j, rtol=1e-6)
104 105


106
@utils.place(config.DEVICES)
107 108 109 110 111 112 113 114 115 116 117 118
@utils.parameterize(
    (utils.TEST_CASE_NAME, 'fun', 'xs', 'v', 'dtype'),
    (
        (
            'dropout',
            paddle.nn.functional.dropout,
            (np.random.rand(5000, 5000),),
            None,
            'float32',
        ),
    ),
)
119 120 121 122
class TestDropoutGrad(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.xs = tuple(x.astype(cls.dtype) for x in cls.xs)
123 124 125 126 127 128 129 130 131 132
        cls._rtol = (
            config.TOLERANCE.get(str(cls.dtype))
            .get("first_order_grad")
            .get("rtol")
        )
        cls._atol = (
            config.TOLERANCE.get(str(cls.dtype))
            .get("first_order_grad")
            .get("atol")
        )
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

    def setUp(self):
        paddle.enable_static()
        paddle.incubate.autograd.enable_prim()

    def tearDown(self):
        paddle.incubate.autograd.disable_prim()
        paddle.disable_static()

    def test_grad(self):
        def expected():
            paddle.incubate.autograd.disable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
149 150
                    self.xs, self.v, stop_gradient=False
                )
151
                _, ys_grad = paddle.incubate.autograd.vjp(
152 153
                    self.fun, static_xs, static_v
                )
154 155 156 157 158 159 160 161 162 163 164 165
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.enable_prim()
            return out

        def actual():
            paddle.incubate.autograd.enable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
166 167 168 169 170 171 172
                    self.xs, self.v, stop_gradient=False
                )
                ys = (
                    self.fun(*static_xs)
                    if isinstance(static_xs, typing.Sequence)
                    else self.fun(static_xs)
                )
173 174 175 176 177 178 179 180 181 182 183 184
                ys_grad = paddle.incubate.autograd.grad(ys, static_xs, static_v)
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        expected = expected()
        actual = actual()
        self.assertEqual(type(actual), type(expected))
        for i, j in zip(actual, expected):
185
            np.testing.assert_allclose(np.sum(i), np.sum(j), rtol=1e-1)
186 187


L
levi131 已提交
188 189 190
@utils.place(config.DEVICES)
@utils.parameterize(
    (utils.TEST_CASE_NAME, 'fun', 'xs', 'v', 'dtype'),
191 192 193 194 195 196 197 198 199 200
    (
        (
            'matmul',
            paddle.matmul,
            (np.random.rand(2, 3), np.random.rand(3, 2)),
            None,
            'float32',
        ),
    ),
)
L
levi131 已提交
201 202 203 204
class TestWithoutProgramGuard(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.xs = tuple(x.astype(cls.dtype) for x in cls.xs)
205 206 207 208 209 210 211 212 213 214
        cls._rtol = (
            config.TOLERANCE.get(str(cls.dtype))
            .get("first_order_grad")
            .get("rtol")
        )
        cls._atol = (
            config.TOLERANCE.get(str(cls.dtype))
            .get("first_order_grad")
            .get("atol")
        )
L
levi131 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

    def setUp(self):
        paddle.enable_static()
        paddle.incubate.autograd.enable_prim()

    def tearDown(self):
        paddle.incubate.autograd.disable_prim()
        paddle.disable_static()

    def test_forward_grad_without_program_guard(self):
        def with_program_guard():
            paddle.incubate.autograd.enable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
231 232 233 234 235 236 237
                    self.xs, self.v, stop_gradient=False
                )
                ys = (
                    self.fun(*static_xs)
                    if isinstance(static_xs, typing.Sequence)
                    else self.fun(static_xs)
                )
L
levi131 已提交
238
                ys_grad = paddle.incubate.autograd.forward_grad(
239 240
                    ys, static_xs, static_v
                )
L
levi131 已提交
241 242 243 244 245 246 247 248 249 250
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        def without_program_guard():
            paddle.incubate.autograd.enable_prim()
            feed, static_xs, static_v = utils.gen_static_data_and_feed(
251 252 253 254 255 256 257
                self.xs, self.v, stop_gradient=False
            )
            ys = (
                self.fun(*static_xs)
                if isinstance(static_xs, typing.Sequence)
                else self.fun(static_xs)
            )
L
levi131 已提交
258
            ys_grad = paddle.incubate.autograd.forward_grad(
259 260
                ys, static_xs, static_v
            )
L
levi131 已提交
261 262 263 264 265 266 267 268 269 270 271
            sp = paddle.fluid.framework.default_startup_program()
            mp = paddle.fluid.framework.default_main_program()
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        expected = with_program_guard()
        actual = without_program_guard()
        self.assertEqual(type(actual), type(expected))
272 273 274 275 276 277
        np.testing.assert_allclose(
            np.concatenate(actual),
            np.concatenate(expected),
            rtol=self._rtol,
            atol=self._atol,
        )
L
levi131 已提交
278 279 280 281 282 283 284 285

    def test_grad_without_program_guard(self):
        def with_program_guard():
            paddle.incubate.autograd.enable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
286 287 288 289 290 291 292
                    self.xs, self.v, stop_gradient=False
                )
                ys = (
                    self.fun(*static_xs)
                    if isinstance(static_xs, typing.Sequence)
                    else self.fun(static_xs)
                )
L
levi131 已提交
293 294 295 296 297 298 299 300 301 302 303
                xs_grad = paddle.incubate.autograd.grad(ys, static_xs, static_v)
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=xs_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        def without_program_guard():
            paddle.incubate.autograd.enable_prim()
            feed, static_xs, static_v = utils.gen_static_data_and_feed(
304 305 306 307 308 309 310
                self.xs, self.v, stop_gradient=False
            )
            ys = (
                self.fun(*static_xs)
                if isinstance(static_xs, typing.Sequence)
                else self.fun(static_xs)
            )
L
levi131 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323
            xs_grad = paddle.incubate.autograd.grad(ys, static_xs, static_v)
            sp = paddle.fluid.framework.default_startup_program()
            mp = paddle.fluid.framework.default_main_program()
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=xs_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        expected = with_program_guard()
        actual = without_program_guard()
        for i, j in zip(actual, expected):
            self.assertEqual(type(i), type(j))
324 325 326 327 328 329
            np.testing.assert_allclose(
                np.concatenate(i),
                np.concatenate(j),
                rtol=self._rtol,
                atol=self._atol,
            )
L
levi131 已提交
330 331


332
@utils.place(config.DEVICES)
333 334
@utils.parameterize(
    (utils.TEST_CASE_NAME, 'fun', 'xs', 'v', 'dtype'),
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    (
        (
            'matmul',
            paddle.matmul,
            (np.random.rand(2, 3), np.random.rand(3, 2)),
            None,
            'float32',
        ),
        (
            'multiply',
            paddle.multiply,
            (np.random.rand(2, 3), np.random.rand(2, 3)),
            None,
            'float64',
        ),
        (
            'add',
            paddle.add,
            (np.random.rand(2, 3), np.random.rand(2, 3)),
            None,
            'float32',
        ),
        (
            'input_not_sequence',
            paddle.tanh,
            (np.random.rand(5, 5),),
            None,
            'float64',
        ),
        (
            'input_gradients_not_none',
            paddle.matmul,
            (np.random.rand(3, 3), np.random.rand(3, 3)),
            (np.random.rand(3, 3), np.random.rand(3, 3)),
            'float64',
        ),
        ('log', paddle.log, (np.random.rand(3, 4),), None, 'float32'),
        (
            'abs',
            paddle.abs,
            (np.random.uniform(-10, 10, (10, 10)),),
            None,
            'float32',
        ),
        ('rsqrt', paddle.rsqrt, (np.random.rand(100, 200),), None, 'float32'),
        (
            'sigmoid',
            paddle.nn.functional.sigmoid,
            (
                np.random.rand(
                    5,
                ),
            ),
            None,
            'float32',
        ),
    ),
)
393
# paddle.where, paddle.pow, paddle.maximum has no double grad definition,
394
# can not compute forward grad use double trick
395
class TestForwardGrad(unittest.TestCase):
396 397 398
    @classmethod
    def setUpClass(cls):
        cls.xs = tuple(x.astype(cls.dtype) for x in cls.xs)
399 400 401 402 403 404 405 406 407 408
        cls._rtol = (
            config.TOLERANCE.get(str(cls.dtype))
            .get("first_order_grad")
            .get("rtol")
        )
        cls._atol = (
            config.TOLERANCE.get(str(cls.dtype))
            .get("first_order_grad")
            .get("atol")
        )
409 410 411 412 413 414 415 416 417

    def setUp(self):
        paddle.enable_static()
        paddle.incubate.autograd.enable_prim()

    def tearDown(self):
        paddle.incubate.autograd.disable_prim()
        paddle.disable_static()

418
    def test_forward_grad(self):
419 420 421 422 423 424
        def expected():
            paddle.incubate.autograd.disable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
425 426
                    self.xs, self.v, stop_gradient=False
                )
427
                _, ys_grad = paddle.incubate.autograd.jvp(
428 429
                    self.fun, static_xs, static_v
                )
430 431 432 433 434 435 436 437 438 439 440 441
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.enable_prim()
            return out

        def actual():
            paddle.incubate.autograd.enable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
442 443 444 445 446 447 448
                    self.xs, self.v, stop_gradient=False
                )
                ys = (
                    self.fun(*static_xs)
                    if isinstance(static_xs, typing.Sequence)
                    else self.fun(static_xs)
                )
449
                ys_grad = paddle.incubate.autograd.forward_grad(
450 451
                    ys, static_xs, static_v
                )
452 453 454 455 456 457 458 459 460 461
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        actual = actual()
        expected = expected()
        self.assertEqual(type(actual), type(expected))
462 463 464 465 466 467
        np.testing.assert_allclose(
            np.concatenate(actual),
            np.concatenate(expected),
            rtol=self._rtol,
            atol=self._atol,
        )
468 469 470 471 472 473 474 475

    def test_prim_disabled(self):
        paddle.incubate.autograd.disable_prim()
        sp = paddle.static.Program()
        mp = paddle.static.Program()
        with self.assertRaises(RuntimeError):
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
476 477 478 479 480 481 482
                    self.xs, self.v, stop_gradient=False
                )
                ys = (
                    self.fun(*static_xs)
                    if isinstance(static_xs, typing.Sequence)
                    else self.fun(static_xs)
                )
483
                ys_grad = paddle.incubate.autograd.forward_grad(
484 485
                    ys, static_xs, static_v
                )
486 487 488 489 490 491 492 493 494
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            exe.run(mp, feed=feed, fetch_list=ys_grad)
        paddle.incubate.autograd.enable_prim()

    def test_illegal_param(self):
        paddle.incubate.autograd.enable_prim()
        with self.assertRaises(TypeError):
495
            paddle.incubate.autograd.forward_grad(
496 497
                1, paddle.static.data('inputs', shape=[1])
            )
498 499

        with self.assertRaises(TypeError):
500
            paddle.incubate.autograd.forward_grad(
501 502
                paddle.static.data('targets', shape=[1]), 1
            )
503 504 505
        paddle.incubate.autograd.disable_prim()


506 507 508
where_wrap = lambda x, y: paddle.where(paddle.eye(3, 4) == 1, x, y)


509
@utils.place(config.DEVICES)
510 511 512
@utils.parameterize(
    (utils.TEST_CASE_NAME, 'fun', 'xs', 'v', 'dtype'),
    (
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        (
            'matmul',
            paddle.matmul,
            (np.random.rand(2, 3), np.random.rand(3, 2)),
            None,
            'float32',
        ),
        (
            'multiply',
            paddle.multiply,
            (np.random.rand(2, 3), np.random.rand(2, 3)),
            None,
            'float64',
        ),
        (
            'div',
            paddle.divide,
            (np.random.rand(2, 3), np.random.rand(2, 3)),
            None,
            'float64',
        ),
        (
            'add',
            paddle.add,
            (np.random.rand(2, 3), np.random.rand(2, 3)),
            None,
            'float32',
        ),
        (
            'input_not_sequence',
            paddle.tanh,
            (np.random.rand(5, 5),),
            None,
            'float64',
        ),
        (
            'input_gradients_not_none',
            paddle.matmul,
            (np.random.rand(3, 3), np.random.rand(3, 3)),
            (np.random.rand(3, 3),),
            'float64',
        ),
        ('sin', paddle.sin, (np.random.rand(100, 200),), None, 'float32'),
        ('rsqrt', paddle.rsqrt, (np.random.rand(100, 200),), None, 'float32'),
        ('cos', paddle.cos, (np.random.rand(200, 90),), None, 'float32'),
        ('exp', paddle.exp, (np.random.rand(299, 320),), None, 'float32'),
559 560 561
        # In where op, grad of condition computed by paddle.static.gradients is None,
        # and paddle.incubate.autograd.grad will replace None with zeros while transpose
        # will just return None because cond_dot is unused, that is a diff.
562 563 564 565 566 567 568
        (
            'select',
            where_wrap,
            (np.random.rand(3, 4), np.random.rand(3, 4)),
            None,
            'float32',
        ),
569
        # pow_p and pow has diff when compute z_dot of 0^0
570 571 572 573 574 575 576
        (
            'pow',
            paddle.pow,
            (np.array([1, 2, 3]), np.array([0, 2, 7])),
            None,
            'float32',
        ),
577
        # To make max_p consistent with paddle.maximum, be sure x.grad = 0 and y.grad = 1 when x==y.
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        (
            'max',
            paddle.maximum,
            (
                np.array([1, 2, 3]),
                np.array([2, 2, 2]),
            ),
            None,
            'float32',
        ),
        ('erf', paddle.erf, (np.random.rand(300, 288),), None, 'float32'),
        (
            'gelu',
            paddle.nn.functional.gelu,
            (np.random.rand(200, 189),),
            None,
            'float32',
        ),
        (
            'gelu_approximate',
            lambda x: paddle.nn.functional.gelu(x, True),
            (np.random.rand(200, 189),),
            None,
            'float32',
        ),
        ('sum', paddle.sum, (np.random.rand(200, 345),), None, 'float32'),
        (
            'sigmoid',
            paddle.nn.functional.sigmoid,
            (
                np.random.rand(
                    5,
                ),
            ),
            None,
            'float32',
        ),
        (
            'sum_with_axis',
            lambda x: paddle.sum(x, axis=1),
            (np.random.rand(200, 345),),
            None,
            'float32',
        ),
        (
            'sum_with_keepdim',
            lambda x: paddle.sum(x, keepdim=True),
            (np.random.rand(200, 345),),
            None,
            'float32',
        ),
        ('mean', paddle.mean, (np.random.rand(200, 345),), None, 'float32'),
        (
            'mean_with_axis',
            lambda x: paddle.mean(x, axis=1),
            (np.random.rand(200, 345),),
            None,
            'float32',
        ),
        (
            'mean_with_keepdim',
            lambda x: paddle.mean(x, keepdim=True),
            (np.random.rand(200, 345),),
            None,
            'float32',
        ),
        (
            'mean_with_axis_keepdim',
            lambda x: paddle.mean(x, axis=0, keepdim=True),
            (np.random.rand(200, 345),),
            None,
            'float32',
        ),
        (
            'abs',
            paddle.abs,
            (np.random.uniform(-10, 10, (200, 345)),),
            None,
            'float32',
        ),
        (
            'cast_float',
            lambda x: paddle.cast(x, paddle.float64),
            (np.random.rand(10, 20),),
            None,
            'float32',
        ),
        (
            'cast_int',
            lambda x: paddle.cast(x, paddle.int32),
            (np.random.rand(10, 20),),
            None,
            'float32',
        ),
        ('square', paddle.square, (np.random.rand(100),), None, 'float32'),
        (
            'pow_scalar',
            lambda x: paddle.pow(x, 2),
            (np.random.rand(20, 30),),
            None,
            'float32',
        ),
        ('var', paddle.var, (np.random.rand(200, 324),), None, 'float32'),
        (
            'var_with_axis',
            lambda x: paddle.var(x, axis=1),
            (np.random.rand(10, 20, 30),),
            None,
            'float32',
        ),
        (
            'var_without_unbiased',
            lambda x: paddle.var(x, axis=1, unbiased=False),
            (np.random.rand(10, 20, 30),),
            None,
            'float32',
        ),
        (
            'var_with_keepdim',
            lambda x: paddle.var(x, axis=1, keepdim=True),
            (np.random.rand(10, 20, 30),),
            None,
            'float32',
        ),
        (
            'bn',
            lambda x, w, b: paddle.nn.functional.batch_norm(
                x, paddle.ones((10,)), paddle.ones((10,)), w, b
            ),
            (np.random.rand(10, 10), np.random.rand(10), np.random.rand(10)),
            None,
            'float32',
        ),
        (
            'bn_train',
            lambda x, w, b: paddle.nn.functional.batch_norm(
                x, paddle.ones((10,)), paddle.ones((10,)), w, b, training=True
            ),
            (np.random.rand(10, 10), np.random.rand(10), np.random.rand(10)),
            None,
            'float32',
        ),
        (
            'bn_nhwc',
            lambda x, w, b: paddle.nn.functional.batch_norm(
                x,
                paddle.ones((10,)) + 1,
                paddle.ones((10,)),
                w,
                b,
                training=True,
                data_format='NHWC',
            ),
            (np.random.rand(10, 10), np.random.rand(10), np.random.rand(10)),
            None,
            'float32',
        ),
        (
            'bn_global_stat',
            lambda x, w, b: paddle.nn.functional.batch_norm(
                x,
                paddle.ones((10,)) + 3.2,
                paddle.ones((10,)) + 6.7,
                w,
                b,
                training=True,
                data_format='NHWC',
                use_global_stats=True,
            ),
            (np.random.rand(10, 10), np.random.rand(10), np.random.rand(10)),
            None,
            'float32',
        ),
    ),
)
753
class TestGrad(unittest.TestCase):
754 755 756 757 758 759 760 761 762 763 764
    def setUp(self):
        paddle.enable_static()
        paddle.incubate.autograd.enable_prim()

    def tearDown(self):
        paddle.incubate.autograd.disable_prim()
        paddle.disable_static()

    @classmethod
    def setUpClass(cls):
        cls.xs = tuple(x.astype(cls.dtype) for x in cls.xs)
765 766 767 768 769 770 771 772 773 774
        cls._rtol = (
            config.TOLERANCE.get(str(cls.dtype))
            .get("first_order_grad")
            .get("rtol")
        )
        cls._atol = (
            config.TOLERANCE.get(str(cls.dtype))
            .get("first_order_grad")
            .get("atol")
        )
775 776 777 778 779 780 781 782

    def test_grad(self):
        def expected():
            paddle.incubate.autograd.disable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
783 784
                    self.xs, self.v, stop_gradient=False
                )
785
                _, ys_grad = paddle.incubate.autograd.vjp(
786 787
                    self.fun, static_xs, static_v
                )
788 789 790 791 792 793 794 795 796 797 798 799
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.enable_prim()
            return out

        def actual():
            paddle.incubate.autograd.enable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
800 801 802 803 804 805 806
                    self.xs, self.v, stop_gradient=False
                )
                ys = (
                    self.fun(*static_xs)
                    if isinstance(static_xs, typing.Sequence)
                    else self.fun(static_xs)
                )
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
                ys_grad = paddle.incubate.autograd.grad(ys, static_xs, static_v)
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        actual = actual()
        expected = expected()
        self.assertEqual(type(actual), type(expected))
        for i, j in zip(actual, expected):
            np.testing.assert_allclose(i, j, rtol=self._rtol, atol=self._atol)

    def test_illegal_param(self):
        paddle.incubate.autograd.enable_prim()
        with self.assertRaises(TypeError):
            paddle.incubate.autograd.grad(
825 826
                1, paddle.static.data('inputs', shape=[1])
            )
827 828 829

        with self.assertRaises(TypeError):
            paddle.incubate.autograd.grad(
830 831
                paddle.static.data('targets', shape=[1]), 1
            )
832 833 834 835 836 837 838 839 840
        paddle.incubate.autograd.disable_prim()

    def test_disable_prim(self):
        def expected():
            paddle.incubate.autograd.disable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
841 842 843 844 845 846 847
                    self.xs, self.v, stop_gradient=False
                )
                ys = (
                    self.fun(*static_xs)
                    if isinstance(static_xs, typing.Sequence)
                    else self.fun(static_xs)
                )
848 849 850 851 852 853 854 855 856 857 858 859 860
                ys_grad = paddle.incubate.autograd.grad(ys, static_xs, static_v)
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.enable_prim()
            return out

        def actual():
            paddle.incubate.autograd.disable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
861 862 863 864 865 866 867
                    self.xs, self.v, stop_gradient=False
                )
                ys = (
                    self.fun(*static_xs)
                    if isinstance(static_xs, typing.Sequence)
                    else self.fun(static_xs)
                )
868 869 870 871 872 873 874 875 876 877 878 879 880 881
                ys_grad = paddle.static.gradients(ys, static_xs, static_v)
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.enable_prim()
            return out

        actual = actual()
        expected = expected()
        self.assertEqual(type(actual), type(expected))
        for i, j in zip(actual, expected):
            np.testing.assert_allclose(i, j, rtol=self._rtol, atol=self._atol)


882 883 884 885 886 887 888 889
def multiply_pd(x):
    x2 = paddle.multiply(x, x)
    x3 = paddle.multiply(x2, x2)
    x4 = paddle.multiply(x3, x)
    return x4


multiply_ag = lambda xs: xs[0] * xs[0] * xs[0] * xs[0] * xs[0]
890 891 892
sin_ag = lambda xs: anp.sin(xs[0])
cos_ag = lambda xs: anp.cos(xs[0])
exp_ag = lambda xs: anp.exp(xs[0])
893
pow_ag = lambda xs: xs[0] ** xs[1]
894 895
log_ag = lambda xs: anp.log(xs[0])
erf_ag = lambda xs: ascipy.special.erf(xs[0])
896
sigmoid_ag = lambda xs: 1.0 / (1 + anp.exp(-xs[0]))
897 898 899 900 901 902 903 904 905


def gelu_ag(x, approximate=False):
    if approximate:
        sqrt_2_over_pi = np.sqrt(2 / np.pi).astype(x.dtype)
        cdf = 0.5 * (1.0 + anp.tanh(sqrt_2_over_pi * (x + 0.044715 * (x**3))))
        return x * cdf
    else:
        return x * (ascipy.special.erf(x / np.sqrt(2)) + 1) / 2
906 907 908 909


@utils.place(config.DEVICES)
@utils.parameterize(
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
    (utils.TEST_CASE_NAME, 'fun_pd', 'fun_ag', 'xs', 'v', 'dtype'),
    (
        (
            'multiply',
            multiply_pd,
            multiply_ag,
            (np.random.rand(3, 5),),
            None,
            'float32',
        ),
        ('sin', paddle.sin, sin_ag, (np.random.rand(2, 3),), None, 'float32'),
        ('cos', paddle.cos, cos_ag, (np.random.rand(3, 4),), None, 'float32'),
        ('exp', paddle.exp, exp_ag, (np.random.rand(2, 3),), None, 'float32'),
        (
            'pow',
            paddle.pow,
            pow_ag,
            (np.random.rand(2, 3), np.random.rand(2, 3)),
            None,
            'float32',
        ),
        ('log', paddle.log, log_ag, (np.random.rand(3, 8),), None, 'float32'),
        (
            'erf',
            paddle.erf,
            erf_ag,
            (np.random.rand(100, 200),),
            None,
            'float32',
        ),
        (
            'gelu',
            paddle.nn.functional.gelu,
            lambda xs: gelu_ag(xs[0]),
            (np.random.rand(10, 20, 30),),
            None,
            'float32',
        ),
        (
            'gelu_approximate',
            lambda x: paddle.nn.functional.gelu(x, approximate=True),
            lambda xs: gelu_ag(xs[0], approximate=True),
            (np.random.rand(10, 20, 30),),
            None,
            'float32',
        ),
        (
            'sigmoid',
            paddle.nn.functional.sigmoid,
            sigmoid_ag,
            (np.random.rand(10, 20),),
            None,
            'float32',
        ),
    ),
)
966
class TestGradWithHigherOrder(unittest.TestCase):
967 968 969 970 971 972 973 974
    def setUp(self):
        paddle.enable_static()
        paddle.incubate.autograd.enable_prim()

    def tearDown(self):
        paddle.incubate.autograd.disable_prim()
        paddle.disable_static()

975 976 977
    @classmethod
    def setUpClass(cls):
        cls.xs = tuple(x.astype(cls.dtype) for x in cls.xs)
978 979 980 981 982 983 984 985 986 987
        cls._rtol = (
            config.TOLERANCE.get(str(cls.dtype))
            .get("first_order_grad")
            .get("rtol")
        )
        cls._atol = (
            config.TOLERANCE.get(str(cls.dtype))
            .get("first_order_grad")
            .get("atol")
        )
988

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    def test_grad(self):
        def expected():
            egrad = autograd.elementwise_grad
            grad_3 = egrad(egrad(egrad(self.fun_ag)))(self.xs)
            grad_4 = egrad(egrad(egrad(egrad(self.fun_ag))))(self.xs)
            grad_5 = egrad(egrad(egrad(egrad(egrad(self.fun_ag)))))(self.xs)
            # the output of egrad is tuple
            return list(grad_3 + grad_4 + grad_5)

        def actual():
            paddle_grad = paddle.incubate.autograd.grad
            paddle.incubate.autograd.enable_prim()
            main = paddle.static.Program()
            startup = paddle.static.Program()
            with paddle.static.program_guard(main, startup):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
1005 1006 1007 1008 1009 1010 1011
                    self.xs, self.v, stop_gradient=False
                )
                ys = (
                    self.fun_pd(*static_xs)
                    if isinstance(static_xs, typing.Sequence)
                    else self.fun_pd(static_xs)
                )
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

                grad1 = paddle_grad(ys, static_xs, static_v)
                grad2 = paddle_grad(grad1, static_xs, static_v)
                grad3 = paddle_grad(grad2, static_xs, static_v)
                grad4 = paddle_grad(grad3, static_xs, static_v)
                grad5 = paddle_grad(grad4, static_xs, static_v)
                paddle.incubate.autograd.prim2orig()

            fetch_list = [grad3, grad4, grad5]

            place = paddle.CPUPlace()
            if paddle.device.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
            exe = paddle.static.Executor(place)
            exe.run(startup)
            outs = exe.run(main, feed=feed, fetch_list=fetch_list)
            paddle.incubate.autograd.disable_prim()
            return outs

        actual = actual()
        expected = expected()
        self.assertEqual(type(actual), type(expected))
        for i, j in zip(actual, expected):
            np.testing.assert_allclose(i, j, rtol=self._rtol, atol=self._atol)
1036 1037


1038 1039
if __name__ == '__main__':
    unittest.main()