Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fee84e09
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fee84e09
编写于
9月 27, 2022
作者:
L
levi131
提交者:
GitHub
9月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add bernoulli primitive op and support dropout op in new AD. (#46238)
* init dropout * small format fix * fix pr comments * add value test
上级
403cd2b5
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
339 addition
and
1 deletion
+339
-1
paddle/fluid/operators/prim_ops/CMakeLists.txt
paddle/fluid/operators/prim_ops/CMakeLists.txt
+1
-0
paddle/fluid/operators/prim_ops/bernoulli_p_op.cc
paddle/fluid/operators/prim_ops/bernoulli_p_op.cc
+82
-0
paddle/fluid/operators/prim_ops/prim_op_test.cc
paddle/fluid/operators/prim_ops/prim_op_test.cc
+22
-0
python/paddle/fluid/tests/unittests/autograd/test_orig2prim.py
...n/paddle/fluid/tests/unittests/autograd/test_orig2prim.py
+110
-0
python/paddle/fluid/tests/unittests/autograd/test_prim2orig.py
...n/paddle/fluid/tests/unittests/autograd/test_prim2orig.py
+18
-0
python/paddle/fluid/tests/unittests/autograd/test_primapi.py
python/paddle/fluid/tests/unittests/autograd/test_primapi.py
+63
-0
python/paddle/incubate/autograd/primops.py
python/paddle/incubate/autograd/primops.py
+9
-0
python/paddle/incubate/autograd/primrules.py
python/paddle/incubate/autograd/primrules.py
+34
-1
未找到文件。
paddle/fluid/operators/prim_ops/CMakeLists.txt
浏览文件 @
fee84e09
...
...
@@ -36,6 +36,7 @@ set(PRIM_OP_SRCS
pow_p_op.cc
max_p_op.cc
erf_p_op.cc
bernoulli_p_op.cc
abs_p_op.cc
cast_p_op.cc
rsqrt_p_op.cc
)
...
...
paddle/fluid/operators/prim_ops/bernoulli_p_op.cc
0 → 100644
浏览文件 @
fee84e09
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
namespace
framework
{
class
InferShapeContext
;
class
VarDesc
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
operators
{
class
BernoulliPrimOp
:
public
framework
::
OperatorBase
{
public:
BernoulliPrimOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
framework
::
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Prim operator bernoulli_p should not be excuted directly"
));
}
};
class
BernoulliPrimOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddOutput
(
"Y"
,
"(Tensor), The output tensor of bernoulli_p op."
);
AddAttr
<
std
::
vector
<
int64_t
>>
(
"shape"
,
"(std::vector<int64_t>) The shape of output tensor."
);
AddAttr
<
int
>
(
"dtype"
,
"(int) The dtype of output tensor."
);
AddAttr
<
float
>
(
"p"
,
"(float) The probability of bernoulli distribution."
);
AddComment
(
R"DOC(
Autograd primitive bernoulli_p operator.
)DOC"
);
}
};
class
BernoulliPrimOpShapeInference
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
framework
::
InferShapeVarPtr
y_var_ptr
=
ctx
->
GetOutputVarPtrs
(
"Y"
)[
0
];
auto
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int64_t
>>
(
"shape"
);
PADDLE_GET
(
framework
::
VarDesc
*
,
y_var_ptr
)
->
SetShape
(
shape
);
}
};
class
BernoulliPrimOpVarTypeInference
:
public
framework
::
StaticGraphVarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
y_name
=
Output
(
ctx
,
"Y"
)[
0
];
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
PADDLE_GET_CONST
(
int
,
ctx
->
GetAttr
(
"dtype"
)));
SetDataType
(
ctx
,
y_name
,
data_type
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OPERATOR
(
bernoulli_p
,
paddle
::
operators
::
BernoulliPrimOp
,
paddle
::
operators
::
BernoulliPrimOpMaker
,
paddle
::
operators
::
BernoulliPrimOpShapeInference
,
paddle
::
operators
::
BernoulliPrimOpVarTypeInference
);
paddle/fluid/operators/prim_ops/prim_op_test.cc
浏览文件 @
fee84e09
...
...
@@ -40,6 +40,7 @@ USE_OP_ITSELF(eq_p);
USE_OP_ITSELF
(
pow_p
);
USE_OP_ITSELF
(
max_p
);
USE_OP_ITSELF
(
erf_p
);
USE_OP_ITSELF
(
bernoulli_p
);
namespace
paddle
{
namespace
framework
{
...
...
@@ -730,5 +731,26 @@ TEST(PrimOp, erf_p) {
ASSERT_EQ
(
shapes
[
2
],
5L
);
}
TEST
(
PrimOp
,
bernoulli_p
)
{
ProgramDesc
program
;
auto
*
block
=
program
.
MutableBlock
(
0
);
std
::
string
x0
=
"x0"
;
AppendOp
(
block
,
"bernoulli_p"
,
{{}},
{{
"Y"
,
{
x0
}}},
{{
"p"
,
0.5
f
},
{
"dtype"
,
proto
::
VarType_Type_FP32
},
{
"shape"
,
std
::
vector
<
int64_t
>
{
3
,
4
,
5
}}});
ASSERT_EQ
(
block
->
Var
(
"x0"
)
->
GetType
(),
proto
::
VarType
::
LOD_TENSOR
);
ASSERT_EQ
(
block
->
Var
(
"x0"
)
->
GetDataType
(),
proto
::
VarType_Type_FP32
);
auto
shapes
=
block
->
Var
(
"x0"
)
->
GetShape
();
ASSERT_EQ
(
shapes
.
size
(),
3UL
);
ASSERT_EQ
(
shapes
[
0
],
3L
);
ASSERT_EQ
(
shapes
[
1
],
4L
);
ASSERT_EQ
(
shapes
[
2
],
5L
);
}
}
// namespace framework
}
// namespace paddle
python/paddle/fluid/tests/unittests/autograd/test_orig2prim.py
浏览文件 @
fee84e09
...
...
@@ -766,10 +766,120 @@ class TestGeluApproximateOrig2Prim(TestElementWiseAddOrig2Prim):
self
.
out_map
=
{
0
:
self
.
output
[
'Out'
]}
class
TestDropoutOrig2PrimCase1
(
TestElementWiseAddOrig2Prim
):
def
init_data
(
self
):
self
.
op_type
=
'dropout'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
5
,
8
],
dtype
=
'float'
)
self
.
input
=
{
'X'
:
X
}
self
.
output
=
{
'Mask'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
paddle
.
uint8
),
'Out'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
),
}
self
.
attrs
=
{
'dropout_prob'
:
0.5
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
orig2prim_args
=
(
None
,
X
)
self
.
all_ops
=
[
'bernoulli_p'
,
'mul_p'
,
'fill_constant_p'
,
'div_p'
,
'cast_p'
,
'dropout'
]
# { prim_op_output_index: orig_op_output_var }
self
.
out_map
=
{
0
:
self
.
output
[
'Mask'
],
1
:
self
.
output
[
'Out'
]}
class
TestDropoutOrig2PrimCase2
(
TestElementWiseAddOrig2Prim
):
def
init_data
(
self
):
self
.
op_type
=
'dropout'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
5
,
8
],
dtype
=
'float'
)
self
.
input
=
{
'X'
:
X
}
self
.
output
=
{
'Mask'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
paddle
.
uint8
),
'Out'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
),
}
self
.
attrs
=
{
'dropout_prob'
:
0.5
,
'is_test'
:
False
,
'dropout_implementation'
:
'downgrade_in_infer'
}
self
.
orig2prim_args
=
(
None
,
X
)
self
.
all_ops
=
[
'bernoulli_p'
,
'mul_p'
,
'cast_p'
,
'dropout'
]
# { prim_op_output_index: orig_op_output_var }
self
.
out_map
=
{
0
:
self
.
output
[
'Mask'
],
1
:
self
.
output
[
'Out'
]}
class
TestDropoutOrig2PrimCase3
(
TestElementWiseAddOrig2Prim
):
def
init_data
(
self
):
self
.
op_type
=
'dropout'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
5
,
8
],
dtype
=
'float'
)
self
.
input
=
{
'X'
:
X
}
self
.
output
=
{
'Mask'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
paddle
.
uint8
),
'Out'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
),
}
self
.
attrs
=
{
'dropout_prob'
:
0.5
,
'is_test'
:
True
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
orig2prim_args
=
(
None
,
X
)
self
.
all_ops
=
[
'bernoulli_p'
,
'cast_p'
,
'dropout'
]
# { prim_op_output_index: orig_op_output_var }
self
.
out_map
=
{
0
:
self
.
output
[
'Mask'
],
1
:
self
.
output
[
'Out'
]}
class
TestDropoutOrig2PrimCase4
(
TestElementWiseAddOrig2Prim
):
def
init_data
(
self
):
self
.
op_type
=
'dropout'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
5
,
8
],
dtype
=
'float'
)
self
.
input
=
{
'X'
:
X
}
self
.
output
=
{
'Mask'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
paddle
.
uint8
),
'Out'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
),
}
self
.
attrs
=
{
'dropout_prob'
:
0.5
,
'is_test'
:
True
,
'dropout_implementation'
:
'downgrade_in_infer'
}
self
.
orig2prim_args
=
(
None
,
X
)
self
.
all_ops
=
[
'bernoulli_p'
,
'fill_constant_p'
,
'mul_p'
,
'cast_p'
,
'dropout'
]
# { prim_op_output_index: orig_op_output_var }
self
.
out_map
=
{
0
:
self
.
output
[
'Mask'
],
1
:
self
.
output
[
'Out'
]}
class
TestReduceSumOrig2Prim
(
TestElementWiseAddOrig2Prim
):
def
init_data
(
self
):
self
.
op_type
=
'reduce_sum'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
5
,
8
],
dtype
=
'float'
)
self
.
input
=
{
'X'
:
X
}
...
...
python/paddle/fluid/tests/unittests/autograd/test_prim2orig.py
浏览文件 @
fee84e09
...
...
@@ -670,6 +670,24 @@ class TestMaxPPrim2Orig(TestAddPPrim2Orig):
self
.
out_map
=
{
self
.
output
[
'Z'
]:
0
}
class
TestBernoulliPPrim2Orig
(
TestAddPPrim2Orig
):
def
init_data
(
self
):
self
.
op_type
=
'bernoulli_p'
self
.
input
=
{}
self
.
output
=
{
'Y'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
paddle
.
float64
)
}
self
.
attrs
=
{
'shape'
:
[
7
,
8
],
'dtype'
:
paddle
.
float64
,
'p'
:
0.5
}
self
.
prim2orig_args
=
()
self
.
all_ops
=
[
'bernoulli_p'
,
'fill_constant'
,
'bernoulli'
]
self
.
out_map
=
{
self
.
output
[
'Y'
]:
0
}
class
TestCastPPrim2Orig
(
TestAddPPrim2Orig
):
def
init_data
(
self
):
...
...
python/paddle/fluid/tests/unittests/autograd/test_primapi.py
浏览文件 @
fee84e09
...
...
@@ -25,6 +25,69 @@ import config
import
utils
@
utils
.
place
(
config
.
DEVICES
)
@
utils
.
parameterize
((
utils
.
TEST_CASE_NAME
,
'fun'
,
'xs'
,
'v'
,
'dtype'
),
((
'dropout'
,
paddle
.
nn
.
functional
.
dropout
,
(
np
.
random
.
rand
(
5000
,
5000
),
),
None
,
'float32'
),
))
class
TestDropoutGrad
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
):
cls
.
xs
=
tuple
(
x
.
astype
(
cls
.
dtype
)
for
x
in
cls
.
xs
)
cls
.
_rtol
=
config
.
TOLERANCE
.
get
(
str
(
cls
.
dtype
)).
get
(
"first_order_grad"
).
get
(
"rtol"
)
cls
.
_atol
=
config
.
TOLERANCE
.
get
(
str
(
cls
.
dtype
)).
get
(
"first_order_grad"
).
get
(
"atol"
)
def
setUp
(
self
):
paddle
.
enable_static
()
paddle
.
incubate
.
autograd
.
enable_prim
()
def
tearDown
(
self
):
paddle
.
incubate
.
autograd
.
disable_prim
()
paddle
.
disable_static
()
def
test_grad
(
self
):
def
expected
():
paddle
.
incubate
.
autograd
.
disable_prim
()
sp
=
paddle
.
static
.
Program
()
mp
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
mp
,
sp
):
feed
,
static_xs
,
static_v
=
utils
.
gen_static_data_and_feed
(
self
.
xs
,
self
.
v
,
stop_gradient
=
False
)
_
,
ys_grad
=
paddle
.
incubate
.
autograd
.
vjp
(
self
.
fun
,
static_xs
,
static_v
)
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
sp
)
out
=
exe
.
run
(
mp
,
feed
=
feed
,
fetch_list
=
ys_grad
)
paddle
.
incubate
.
autograd
.
enable_prim
()
return
out
def
actual
():
paddle
.
incubate
.
autograd
.
enable_prim
()
sp
=
paddle
.
static
.
Program
()
mp
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
mp
,
sp
):
feed
,
static_xs
,
static_v
=
utils
.
gen_static_data_and_feed
(
self
.
xs
,
self
.
v
,
stop_gradient
=
False
)
ys
=
self
.
fun
(
*
static_xs
)
if
isinstance
(
static_xs
,
typing
.
Sequence
)
else
self
.
fun
(
static_xs
)
ys_grad
=
paddle
.
incubate
.
autograd
.
grad
(
ys
,
static_xs
,
static_v
)
paddle
.
incubate
.
autograd
.
prim2orig
(
mp
.
block
(
0
))
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
sp
)
out
=
exe
.
run
(
mp
,
feed
=
feed
,
fetch_list
=
ys_grad
)
paddle
.
incubate
.
autograd
.
disable_prim
()
return
out
expected
=
expected
()
actual
=
actual
()
self
.
assertEqual
(
type
(
actual
),
type
(
expected
))
for
i
,
j
in
zip
(
actual
,
expected
):
np
.
testing
.
assert_allclose
(
np
.
sum
(
i
),
np
.
sum
(
j
),
rtol
=
1e-3
)
@
utils
.
place
(
config
.
DEVICES
)
@
utils
.
parameterize
(
(
utils
.
TEST_CASE_NAME
,
'fun'
,
'xs'
,
'v'
,
'dtype'
),
...
...
python/paddle/incubate/autograd/primops.py
浏览文件 @
fee84e09
...
...
@@ -76,6 +76,15 @@ def fill_const(value, shape, dtype, out=None):
return
out
def
bernoulli
(
shape
,
dtype
,
p
,
out
=
None
):
attrs
=
{
'shape'
:
shape
,
'dtype'
:
dtype
,
'p'
:
p
}
helper
=
LayerHelper
(
'bernoulli_p'
,
**
locals
())
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
helper
.
layer_type
,
outputs
=
{
'Y'
:
out
},
attrs
=
attrs
)
return
out
def
neg
(
x
,
out
=
None
):
zero
=
fill_const
(
0.0
,
x
.
shape
,
x
.
dtype
)
return
sub
(
zero
,
x
)
...
...
python/paddle/incubate/autograd/primrules.py
浏览文件 @
fee84e09
...
...
@@ -23,7 +23,7 @@ from .primops import (add, broadcast, concat, cos, div, eq, erf, exp,
fill_const
,
gather
,
ge
,
gt
,
log
,
matmul
,
max
,
mul
,
ne
,
neg
,
reduce_sum
,
reshape
,
scatter_add
,
select
,
set_value
,
sin
,
slice_assign
,
slice_select
,
split
,
sqrt
,
sub
,
tanh
,
transpose
,
rsqrt
)
transpose
,
bernoulli
,
rsqrt
)
from
.primreg
import
(
REGISTER_JVP
,
REGISTER_ORIG2PRIM
,
REGISTER_PRIM2ORIG
,
REGISTER_TRANSPOSE
,
lookup_fn
,
lookup_jvp
,
lookup_orig2prim
,
lookup_prim2orig
,
lookup_transpose
,
...
...
@@ -78,6 +78,7 @@ log
select
equal
elementwise_pow
dropout
These original ops are partially supported:
...
...
@@ -439,6 +440,30 @@ def gelu_orig2prim(op, x):
erf
(
mul
(
x
,
fill_const
(
1
/
math
.
sqrt
(
2.
),
x
.
shape
,
x
.
dtype
)))))
@
REGISTER_ORIG2PRIM
(
'dropout'
)
def
dropout_orig2prim
(
op
,
seed_t
,
x
):
assert
seed_t
is
None
,
'Can not lower dropout into prim ops with seedtensor.'
mask
=
bernoulli
(
shape
=
x
.
shape
,
dtype
=
x
.
dtype
,
p
=
op
.
attr
(
'dropout_prob'
))
if
op
.
attr
(
'dropout_implementation'
)
==
'upscale_in_train'
:
if
op
.
attr
(
'is_test'
)
==
False
:
out
=
div
(
mul
(
x
,
mask
),
fill_const
(
1.0
-
op
.
attr
(
'dropout_prob'
),
x
.
shape
,
x
.
dtype
))
return
primops
.
cast
(
mask
,
dtype
=
paddle
.
uint8
),
out
else
:
return
primops
.
cast
(
mask
,
dtype
=
paddle
.
uint8
),
x
elif
op
.
attr
(
'dropout_implementation'
)
==
'downgrade_in_infer'
:
if
op
.
attr
(
'is_test'
)
==
False
:
return
primops
.
cast
(
mask
,
dtype
=
paddle
.
uint8
),
mul
(
x
,
mask
)
else
:
return
primops
.
cast
(
mask
,
dtype
=
paddle
.
uint8
),
mul
(
x
,
fill_const
(
1.0
-
op
.
attr
(
'dropout_prob'
),
x
.
shape
,
x
.
dtype
))
else
:
raise
RuntimeError
(
'Unsupported dropout_implementation, only support upscale_in_train and downgrade_in_infer'
)
@
REGISTER_ORIG2PRIM
(
'reduce_sum'
)
def
reduce_sum_orig2prim
(
op
,
x
):
axes
=
tuple
(
range
(
0
,
len
(
...
...
@@ -634,6 +659,14 @@ def fill_constant_prim2orig(op):
dtype
=
INT_DTYPE_2_STRING
[
op
.
attr
(
'dtype'
)])
@
REGISTER_PRIM2ORIG
(
'bernoulli_p'
)
def
bernoulli_prim2orig
(
op
):
t
=
paddle
.
full
(
shape
=
op
.
attr
(
'shape'
),
fill_value
=
op
.
attr
(
'p'
),
dtype
=
INT_DTYPE_2_STRING
[
op
.
attr
(
'dtype'
)])
return
paddle
.
bernoulli
(
t
)
@
REGISTER_PRIM2ORIG
(
'select_p'
)
def
select_prim2orig
(
op
,
condition
,
x
,
y
):
return
paddle
.
where
(
condition
,
x
,
y
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录