nanmedian_grad_kernel.cc 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/nanmedian_grad_kernel.h"
16

17 18 19
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
20
#include "paddle/phi/kernels/impl/nanmedian_grad_kernel_impl.h"
21 22 23 24 25 26 27 28

namespace phi {

template <typename T, typename Context>
void CalcMedianGradKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& median_index,
                          const DenseTensor& out_grad,
29
                          const IntArray& axes UNUSED,
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
                          DenseTensor* x_grad,
                          T* x_grad_ptr) {
  phi::funcs::SetConstant<Context, T> set_zero;
  set_zero(dev_ctx, x_grad, static_cast<T>(0));
  if (!x_grad_ptr) return;

  const int64_t* m_ptr = median_index.data<int64_t>();
  const T* out_grad_ptr = out_grad.data<T>();
  int64_t numel = x.numel();
  auto x_dim = x.dims();
  int64_t rank = x_dim.size();
  int64_t stride = x_dim[rank - 1];

  int64_t pre_dim = numel / stride;
  int64_t i = 0;
  int64_t offset = 0;
  T div_factor = static_cast<T>(2.0);
  for (i = 0; i < pre_dim; i++) {
    if (m_ptr[2 * i] >= 0) {
      if (m_ptr[2 * i] == m_ptr[2 * i + 1]) {
        x_grad_ptr[offset + m_ptr[2 * i]] = out_grad_ptr[i];
      } else {
        x_grad_ptr[offset + m_ptr[2 * i]] = out_grad_ptr[i] / div_factor;
        x_grad_ptr[offset + m_ptr[2 * i + 1]] = out_grad_ptr[i] / div_factor;
      }
    }
    offset += stride;
  }
}

template <typename T, typename Context>
void BaseMedianGradKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& median_index,
                          const DenseTensor& out_grad,
                          const IntArray& axes,
                          DenseTensor* x_grad) {
  auto rank = x.dims().size();
  T* x_grad_ptr = dev_ctx.template Alloc<T>(x_grad);
  if (axes.size() && (rank > 1)) {
    DenseTensor tmp_x_grad(*x_grad);
    CalcMedianGradKernel<T, Context>(
        dev_ctx, x, median_index, out_grad, axes, &tmp_x_grad, x_grad_ptr);
    PostprocessMedianGradKernel<T, Context>(dev_ctx, &tmp_x_grad, axes, x_grad);
  } else {
    CalcMedianGradKernel<T, Context>(
        dev_ctx, x, median_index, out_grad, axes, x_grad, x_grad_ptr);
  }
}

template <typename T, typename Context>
void NanmedianGradKernel(const Context& dev_ctx,
                         const DenseTensor& input,
                         const DenseTensor& median_index,
                         const DenseTensor& out_grad,
                         const IntArray& axes,
86
                         bool keep_dim UNUSED,
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
                         DenseTensor* x_grad) {
  BaseMedianGradKernel<T, Context>(
      dev_ctx, input, median_index, out_grad, axes, x_grad);
}

}  // namespace phi

PD_REGISTER_KERNEL(nanmedian_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::NanmedianGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}