// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/nanmedian_grad_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/impl/nanmedian_grad_kernel_impl.h" namespace phi { template void CalcMedianGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& median_index, const DenseTensor& out_grad, const IntArray& axes UNUSED, DenseTensor* x_grad, T* x_grad_ptr) { phi::funcs::SetConstant set_zero; set_zero(dev_ctx, x_grad, static_cast(0)); if (!x_grad_ptr) return; const int64_t* m_ptr = median_index.data(); const T* out_grad_ptr = out_grad.data(); int64_t numel = x.numel(); auto x_dim = x.dims(); int64_t rank = x_dim.size(); int64_t stride = x_dim[rank - 1]; int64_t pre_dim = numel / stride; int64_t i = 0; int64_t offset = 0; T div_factor = static_cast(2.0); for (i = 0; i < pre_dim; i++) { if (m_ptr[2 * i] >= 0) { if (m_ptr[2 * i] == m_ptr[2 * i + 1]) { x_grad_ptr[offset + m_ptr[2 * i]] = out_grad_ptr[i]; } else { x_grad_ptr[offset + m_ptr[2 * i]] = out_grad_ptr[i] / div_factor; x_grad_ptr[offset + m_ptr[2 * i + 1]] = out_grad_ptr[i] / div_factor; } } offset += stride; } } template void BaseMedianGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& median_index, const DenseTensor& out_grad, const IntArray& axes, DenseTensor* x_grad) { auto rank = x.dims().size(); T* x_grad_ptr = dev_ctx.template Alloc(x_grad); if (axes.size() && (rank > 1)) { DenseTensor tmp_x_grad(*x_grad); CalcMedianGradKernel( dev_ctx, x, median_index, out_grad, axes, &tmp_x_grad, x_grad_ptr); PostprocessMedianGradKernel(dev_ctx, &tmp_x_grad, axes, x_grad); } else { CalcMedianGradKernel( dev_ctx, x, median_index, out_grad, axes, x_grad, x_grad_ptr); } } template void NanmedianGradKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& median_index, const DenseTensor& out_grad, const IntArray& axes, bool keep_dim UNUSED, DenseTensor* x_grad) { BaseMedianGradKernel( dev_ctx, input, median_index, out_grad, axes, x_grad); } } // namespace phi PD_REGISTER_KERNEL(nanmedian_grad, CPU, ALL_LAYOUT, phi::NanmedianGradKernel, float, double, int, int64_t) {}