translated_layer.py 61.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
17

18 19
import numpy as np

20
import paddle
21 22
from paddle import _legacy_C_ops
from paddle.fluid import backward, core, framework, unique_name
23
from paddle.fluid.dygraph.base import switch_to_static_graph
24 25
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
26
    _is_enable_standalone_executor,
27
)
28
from paddle.fluid.framework import OpProtoHolder, _non_static_mode
29
from paddle.jit.dy2static.partial_program import (
30
    LazyInitialized,
31
    add_build_strategy_for,
32
)
33
from paddle.nn.layer import layers
34

35 36
from .dy2static.utils import _out_grad_names, _param_grad_names

J
JYChen 已提交
37
__all__ = []
38

39 40 41
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
42
INFER_PROPERTY_SUFFIX = '.meta'
43

44 45 46
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
47 48 49 50 51 52 53 54 55


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
56 57 58
        raise ValueError(
            "Unsupported program version: %d\n" % program_desc._version()
        )
59 60 61 62
    return program_desc


def _is_persistable(var_desc):
63 64 65 66 67 68
    if (
        var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var_desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var_desc.type() == core.VarDesc.VarType.READER
        or var_desc.type() == core.VarDesc.VarType.RAW
    ):
69 70 71 72 73 74 75
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
76
    for block_idx in range(program_desc.num_blocks()):
77
        block = program_desc.block(block_idx)
78
        for op_idx in range(block.op_size()):
79 80 81 82 83
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
84
    for block_idx in range(program_desc.num_blocks()):
85
        block = program_desc.block(block_idx)
86
        for op_idx in range(block.op_size()):
87 88 89 90 91 92 93 94 95 96 97 98
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
99
    for i in range(program_desc.num_blocks()):
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
118
    for i in range(program_desc.num_blocks()):
119 120 121 122 123 124
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


125
@switch_to_static_graph
126 127 128
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
129
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
130
    """
131 132 133
    suffix = LOADED_VAR_SUFFIX
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
134 135


136 137 138
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
139 140 141


def _append_loaded_suffix_to_var(program_desc):
142
    suffix_varname_dict = {}
143 144 145 146
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
147
        suffix_varname_dict[new_name] = old_name
148
        var_desc.set_name(new_name)
149
        for block_idx in range(program_desc.num_blocks()):
150
            block = program_desc.block(block_idx)
151
            block._rename_var(old_name.encode(), new_name.encode())
152
            for op_idx in range(block.op_size()):
153 154 155
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
156
    return suffix_varname_dict
157 158


159 160 161 162 163 164
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
165
    new_old_dict = {}
166 167 168 169 170 171 172
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
173
def _rename_var_program_desc(program_desc, include=None, exclude=None):
174
    """
175 176 177 178 179 180 181 182
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
183 184 185 186 187

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
188 189 190 191 192

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
193
    """
194 195
    dict_rename_var_old_new = {}
    dict_rename_var_new_old = {}
196
    old_names = []
197
    # Store all old names
198
    for b_idx in range(program_desc.num_blocks()):
199 200 201
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
202 203 204 205

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
206
    for b_idx in range(program_desc.num_blocks()):
207 208 209
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
210 211
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
212 213 214 215 216
            should_rename = (
                (include is None or name_old in include)
                and (exclude is None or name_old not in exclude)
                and not is_double_grad_var
            )
W
WeiXin 已提交
217
            if should_rename:
218 219 220 221
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
222 223 224
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
225 226 227 228 229 230
                        temp_name
                    )
                    if (
                        name_new
                        not in old_names[:var_idx] + old_names[var_idx + 1 :]
                    ):
W
WeiXin 已提交
231 232 233
                        break
            else:
                name_new = name_old
234
            if name_old != name_new:
235
                cur_block._rename_var(name_old.encode(), name_new.encode())
236 237 238 239 240 241 242 243
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
244
            for b_idx in range(program_desc.num_blocks()):
245 246 247 248 249
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
250 251
                            name_old, dict_rename_var_old_new[name_old]
                        )
252 253 254
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
255 256
                var_name
            ]
257
            dict_rename_var_new_old[
258 259
                double_grad_rename_dict[var_name]
            ] = var_name
260 261

    # Rename on program desc
262
    for b_idx in range(program_desc.num_blocks()):
263
        cur_block = program_desc.block(b_idx)
264
        for op_idx in range(cur_block.op_size()):
265 266 267
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
268 269 270 271
                    if (
                        input_arg_name
                        != dict_rename_var_old_new[input_arg_name]
                    ):
272 273
                        op._rename_input(
                            input_arg_name,
274 275
                            dict_rename_var_old_new[input_arg_name],
                        )
276
                        if cur_block.has_var(input_arg_name.encode()):
277
                            cur_block._rename_var(
278
                                input_arg_name.encode(),
279 280 281 282
                                dict_rename_var_old_new[
                                    input_arg_name
                                ].encode(),
                            )
283 284
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
285 286 287 288
                    if (
                        output_arg_name
                        != dict_rename_var_old_new[output_arg_name]
                    ):
289 290
                        op._rename_output(
                            output_arg_name,
291 292
                            dict_rename_var_old_new[output_arg_name],
                        )
293
                        if cur_block.has_var(output_arg_name.encode()):
294
                            cur_block._rename_var(
295
                                output_arg_name.encode(),
296 297 298 299
                                dict_rename_var_old_new[
                                    output_arg_name
                                ].encode(),
                            )
300 301 302 303
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


304 305 306 307 308
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
309
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
310 311 312 313 314 315 316
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
317
    for i in range(program_desc.num_blocks()):
318
        block = program_desc.block(i)
319
        for j in range(block.op_size()):
320 321 322 323 324
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


325
class _ProgramHolder:
326 327 328
    """
    Holds the execution information of a Program.

329 330
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
331 332 333 334 335 336
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
337
        super().__init__()
338

339
        # input, output, persistable, double_grads var info
340
        self._input_descs = []
341
        self._output_descs = []
342
        self._double_grad_descs = []
343
        self._persistable_names = []
344 345 346 347

        # execution scope
        self._inner_scope = core.Scope()

348 349
        # append suffix var name dict
        self._suffix_varname_dict = None
350 351 352 353
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
354 355
            self._infer_program_desc
        )
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
375
        start_op_index = self._infer_program_desc.block(0).op_size() + len(
376 377
            self._output_descs
        )
378
        end_op_index = whole_program.desc.block(0).op_size()
379 380 381 382
        if start_op_index < end_op_index:
            return add_build_strategy_for(
                whole_program, start_op_index, end_op_index
            )
383 384 385 386 387 388 389
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

390 391 392 393 394 395 396 397
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

398 399 400 401 402 403 404 405
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

406
    @property
407 408
    def input_descs(self):
        return self._input_descs
409 410

    @property
411
    def output_descs(self):
412 413 414 415 416 417
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

418 419 420 421
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

422 423 424 425 426
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
427 428
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
429
        rename_new_old_dict, _ = _rename_var_program_desc(
430 431
            program_desc, list_persistable_var
        )
432 433 434 435
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
436
        for i in range(root_block.op_size()):
437 438 439
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
440
                feed_var_name = op.input('X')[0].encode()
441
                root_block._remove_var(feed_var_name)
442
                self._input_descs.append(
443 444
                    root_block.find_var(op.output('Out')[0].encode())
                )
445
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
446 447
                'save_infer_model/scale_'
            ):
448
                ops_to_remove.append(i)
449
                out_var_name = op.output('Out')[0].encode()
450 451
                root_block._remove_var(out_var_name)
                self._output_descs.append(
452 453
                    root_block.find_var(op.input('X')[0].encode())
                )
454 455
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
456
                fetch_var_name = op.output('Out')[0].encode()
457 458 459 460
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
461 462
                        root_block.find_var(op.input('X')[0].encode())
                    )
463 464 465 466 467 468 469
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

470 471 472 473 474 475
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

476
        # 2. Input processing, reverse feed vars
477
        self._input_descs.reverse()
478 479 480 481

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
482 483 484 485 486
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
487
        # use, multiple outputs may be associated with multiple branches.
488 489 490 491
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
492 493 494 495 496
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
497
        # - append loaded suffix to persistable vars
498
        # NOTE: [why need to append suffix to persistable vars]
499 500 501 502 503 504
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
505
        # to add the LOADED suffix to the parameters of the model loaded
506
        self._suffix_varname_dict = _get_loaded_var_new_old(
507 508
            program_desc, rename_new_old_dict
        )
509

510 511 512 513 514 515 516 517 518 519 520 521
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
2
201716010711 已提交
522
                var = paddle.scale(
523 524
                    var, 1.0, name="translated_layer/scale_{}".format(i)
                )
525 526 527 528 529 530
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
531
    def _get_train_forward_program(self, infer_program_desc):
532 533 534 535 536 537 538 539
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
540
        # rewrite a series of methods for append_backward for program_desc.
541 542
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
543 544
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
545
        for block_idx in range(program.num_blocks):
546 547 548
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
549 550 551 552
                    if (
                        "ReserveSpace" not in op.output_names
                        or len(op.output("ReserveSpace")) == 0
                    ):
553 554
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
555 556
                                ".".join(["reserve_space", 'tmp'])
                            ),
557 558 559
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
560 561
                            stop_gradient=True,
                        )
562
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
563 564
                    continue

565 566 567 568 569
                # There are some situations that users will add backward op in Forward
                # function of Layer. And because backward op doesn't have proto. So, we
                # should skip it when we meet it.
                if not OpProtoHolder.instance().has_op_proto(op.type):
                    continue
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
                proto = OpProtoHolder.instance().get_op_proto(op.type)
                has_create_intermediate_out = False
                for output_proto in proto.outputs:
                    if output_proto.intermediate:
                        intermediate_name = output_proto.name
                        if intermediate_name not in op.output_names:
                            has_create_intermediate_out = True
                            intermediate_var = block.create_var(
                                name=unique_name.generate_with_ignorable_key(
                                    ".".join(
                                        [
                                            op.type + '_' + intermediate_name,
                                            'tmp',
                                        ]
                                    )
                                ),
                                type=core.VarDesc.VarType.LOD_TENSOR,
                                persistable=False,
                                stop_gradient=True,
                            )
                            op.desc.set_output(
                                intermediate_name, [intermediate_var.name]
                            )
                if has_create_intermediate_out:
                    op.desc.infer_var_type(block.desc)
                    op.desc.infer_shape(block.desc)

597 598 599 600 601
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
602

603 604 605 606 607 608 609 610 611 612
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
613
#
614 615 616 617 618 619 620
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
621
#
622 623 624
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
625
# 1. Data Sharing:
626 627 628 629
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
630
#
631 632 633 634
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
635
#   We can not separate the program into forward and backward part, which will
636 637 638 639 640
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
641 642 643
def _load_persistable_vars_by_program(
    model_path, program_holder, params_filename=None
):
644 645 646 647
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
648
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
649 650
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
J
Jiabin Yang 已提交
651
            if framework._in_eager_without_dygraph_check():
652 653 654 655 656 657 658
                new_var = framework.EagerParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
659
            else:
660 661 662 663 664 665 666
                new_var = framework.ParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
667
        else:
668 669 670 671 672 673 674
            new_var = framework._varbase_creator(
                type=each_var.type(),
                name=each_var.name(),
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                persistable=True,
            )
675 676 677 678 679
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
680 681
                attrs={'file_path': os.path.join(model_path, orig_each_name)},
            )
682 683 684 685 686
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
687
        dict_name_old_new = {
688
            v: k for k, v in program_holder._suffix_varname_dict.items()
689 690 691
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
692 693 694 695 696

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
697 698
            attrs={'file_path': os.path.join(model_path, params_filename)},
        )
699 700 701 702 703 704 705 706

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
707
    # After loading the model, the stop_gradient information
708 709 710 711 712 713 714 715 716 717 718 719
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


720 721 722
def _load_persistable_vars(
    model_path, var_info_path, program_holder, params_filename
):
723 724
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
725
        extra_var_info = pickle.load(f)
726 727

    # 2. construct var dict
728
    load_var_dict = {}
729
    load_var_list = []
730
    inv_suffix_varname_dict = {
731
        value: key for key, value in program_holder._suffix_varname_dict.items()
732
    }
733 734 735

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
736
    # var in `extra_var_info` may have been pruned
737 738 739 740 741
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
742 743
                name,
            )
744 745
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
746 747 748
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
J
Jiabin Yang 已提交
749
            if framework._in_eager_without_dygraph_check():
750 751 752 753 754 755
                new_var = framework.EagerParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
756 757
                    persistable=True,
                )
758 759 760 761 762 763 764
            else:
                new_var = framework.ParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
765 766
                    persistable=True,
                )
767
        else:
768 769 770
            new_var = framework._varbase_creator(
                name=new_name, persistable=True
            )
771 772 773 774 775 776

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
777 778 779 780 781 782
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
783 784 785 786 787 788
        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': var_file_path},
        )
789 790 791 792

    return load_var_dict


793 794
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
795
    no_suffix_var_dict = {}
796 797 798 799 800 801
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


802 803
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
804
    program_holder_dict = {}
805 806 807 808 809

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
810 811
        model_name = model_filename[: -len(INFER_MODEL_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
812 813 814 815 816
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
817 818 819 820 821
                model_name
            ):
                parsing_names = filename[
                    len(model_name) : -len(INFER_MODEL_SUFFIX) + 1
                ].split('.')
822 823 824 825 826
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
827 828 829
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
830 831
                _load_program_desc(model_file_path)
            )
832 833 834 835 836 837 838 839 840 841 842
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
843 844
                        _load_program_desc(model_file_path)
                    )
845 846 847 848

    return program_holder_dict


849 850 851
def _construct_params_and_buffers(
    model_path, programs, params_filename=None, append_suffix=True
):
852 853
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
854
    params_path = os.path.join(model_path, str(params_filename))
855

856
    if os.path.exists(var_info_path):
857 858 859 860 861
        var_dict = _load_persistable_vars(
            model_path, var_info_path, programs['forward'], params_filename
        )
        model_name = params_filename[: -len(INFER_PARAMS_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
862
        for file_name in os.listdir(model_path):
863
            if file_name.startswith(model_name) and file_name.endswith(
864 865 866 867 868
                INFER_PARAMS_SUFFIX
            ):
                parsing_names = file_name[
                    len(model_name) : -len(INFER_PARAMS_SUFFIX) + 1
                ].split('.')
869 870 871 872
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
873 874 875 876
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
877 878 879 880
                _load_persistable_vars(
                    model_path, var_info_path, programs[func_name], file_name
                )
            )
881 882
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
883
        return {}
884
    else:
885 886 887
        var_dict = _load_persistable_vars_by_program(
            model_path, programs['forward'], params_filename
        )
888 889 890 891

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

892 893 894
    return var_dict


0
0x45f 已提交
895
def _valid_vars(vars):
896
    return vars if vars else None
0
0x45f 已提交
897 898


W
WeiXin 已提交
899 900 901 902 903
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
904
        if not isinstance(value, (np.ndarray, core.VarBase, core.eager.Tensor)):
W
WeiXin 已提交
905 906
            raise TypeError(
                "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
907 908
                % type(value)
            )
W
WeiXin 已提交
909 910
        # NOTE: In order to unify the API, firstly convert the input to VarBase
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
911
            if framework._in_eager_without_dygraph_check():
912 913 914 915 916
                var = core.eager.Tensor(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
917 918
                    zero_copy=True,
                )
919
            else:
920 921 922 923 924 925 926
                var = core.VarBase(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True,
                )
W
WeiXin 已提交
927 928
        else:
            var = value
929
            # NOTE: we changed var name here,
W
WeiXin 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
948 949
                % var_name
            )
W
WeiXin 已提交
950 951 952

    output_vars = []
    for var_desc in program_holder.output_descs:
J
Jiabin Yang 已提交
953
        if framework._in_eager_without_dygraph_check():
954 955 956 957 958 959 960
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
961
        else:
962 963 964 965 966 967 968
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
W
WeiXin 已提交
969 970 971
        output_vars.append(var)

    # hold forward variables
J
Jiabin Yang 已提交
972
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
973
        tmp_scope_vec = [program_holder.scope]
974
    else:
975 976 977 978 979 980 981
        tmp_scope_vec = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "program_out_scope",
            core.VarDesc.VarType.STEP_SCOPES,
            True,
        )
0
0x45f 已提交
982
        tmp_scope_vec.value().set_scope(program_holder.scope)
W
WeiXin 已提交
983

984 985
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
J
Jiabin Yang 已提交
986
        if framework._in_eager_without_dygraph_check():
987 988 989 990 991 992 993
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
994
        else:
995 996 997 998 999 1000 1001
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
1002 1003
        double_grad_vars.append(var)

W
WeiXin 已提交
1004
    # 2. run program by op
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    trace_program = (
        program_holder.infer_program
        if instance._is_test
        else program_holder.train_program
    )
    forward_program = (
        program_holder._infer_program_desc
        if instance._is_test
        else program_holder.forward_program
    )
W
WeiXin 已提交
1015
    end_op_index = program_holder.infer_program.block(0).op_size()
1016 1017 1018

    attrs = [
        'global_block',
1019 1020 1021 1022 1023 1024 1025 1026
        trace_program.block(0),
        'start_op_index',
        0,
        'end_op_index',
        end_op_index,
        'is_test',
        instance._is_test,
        'program_id',
1027
        paddle.utils._hash_with_id(trace_program, instance),
1028
    ]
1029 1030 1031 1032 1033 1034 1035 1036 1037
    if not instance._is_test:
        attrs.extend(
            (
                'param_grad_names',
                _param_grad_names(trace_program, persistable_vars),
                'out_grad_names',
                _out_grad_names(trace_program, end_op_index, len(output_vars)),
            )
        )
1038

1039 1040 1041 1042
    use_interpretorcore = (
        _is_enable_standalone_executor()
        and _is_dy2st_enable_standalone_executor()
    )
1043 1044 1045
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            (
                'forward_global_block',
                forward_program.block(0),
                'backward_global_block',
                program_holder.backward_program.block(0),
            )
        )

    _legacy_C_ops.run_program(
        _valid_vars(input_vars),
        _valid_vars(persistable_vars),
        _valid_vars(output_vars),
        tmp_scope_vec,
        _valid_vars(double_grad_vars),
        None,
        *attrs
    )
1063

W
WeiXin 已提交
1064 1065 1066 1067 1068 1069 1070 1071
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
    # set param grad VarBase by forward VarBase(LoDTensor)
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
1072
        grad_var_name = persistable_var.name + core.grad_var_suffix()
1073
        grad_var = trace_program.block(0).find_var(grad_var_name.encode())
1074
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
1091 1092
        trace_program, exclude=param_var_names
    )
W
WeiXin 已提交
1093 1094 1095
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
1096 1097 1098 1099 1100 1101 1102
    _append_block(
        main_program,
        trace_program,
        program_holder,
        input,
        dict_rename_var_old_new,
    )
W
WeiXin 已提交
1103
    main_program._sync_with_cpp()
1104 1105 1106
    outs = _get_output_from_program(
        main_program, program_holder, dict_rename_var_old_new
    )
W
WeiXin 已提交
1107 1108 1109 1110 1111 1112 1113 1114
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
1115

W
WeiXin 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


1134 1135 1136 1137 1138 1139 1140
def _append_block(
    dest_program,
    src_program_desc,
    program_holder,
    input_variables,
    dict_rename_var_old_new=None,
):
W
WeiXin 已提交
1141 1142
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1143

W
WeiXin 已提交
1144 1145 1146 1147 1148
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1149
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1150 1151 1152 1153
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
1154 1155 1156 1157 1158 1159 1160 1161
    param_var_names = _collect_current_and_parent_var(
        dest_program, origin_block_idx
    )
    append_var_from_block_desc_static(
        dest_program.block(origin_block_idx),
        src_program_desc.block(0),
        exclude=param_var_names,
    )
W
WeiXin 已提交
1162 1163 1164 1165 1166

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
1167 1168 1169 1170
            "The number of input is invalid, expected {}, but received {}.".format(
                len(name_inp_desc), len(input_names)
            )
        )
W
WeiXin 已提交
1171 1172 1173 1174 1175 1176
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
1177 1178
            outputs={'Out': [out_name]},
        )
W
WeiXin 已提交
1179 1180

    append_ops = append_op_from_block_desc_static(
1181 1182
        dest_program.block(origin_block_idx), src_program_desc.block(0)
    )
W
WeiXin 已提交
1183 1184 1185
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1
1186
    parent_idx = 0
W
WeiXin 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195
    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1196 1197 1198
            append_var_from_block_desc_static(
                dest_block, src_block, exclude=param_var_names
            )
1199
            append_ops += append_op_from_block_desc_static(
1200 1201
                dest_block, src_block
            )
W
WeiXin 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
1211 1212 1213
            op._set_attr(
                'sub_block', dest_program.block(offset_block_idx + origin_id)
            )
W
WeiXin 已提交
1214 1215 1216 1217
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


1218 1219 1220
def _get_output_from_program(
    program, program_holder, dict_rename_var_old_new=None
):
W
WeiXin 已提交
1221 1222 1223
    """
    Get output name of 'program' according to program_holder
    """
1224
    outs = []
W
WeiXin 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1269 1270 1271 1272 1273 1274 1275 1276
    op = framework.Operator(
        block=block,
        desc=op_append,
        type=op_type,
        inputs=None,
        outputs=None,
        attrs=None,
    )
W
WeiXin 已提交
1277 1278 1279 1280
    block.ops.append(op)
    return op


1281 1282 1283
def append_var_from_block_desc_static(
    block, src_block_desc, include=None, exclude=None
):
W
WeiXin 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
1302 1303
            exclude is None or var_desc_name not in exclude
        )
W
WeiXin 已提交
1304 1305 1306
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
1307 1308 1309
                core.VarDesc.VarType.SELECTED_ROWS,
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1310 1311 1312 1313 1314 1315 1316
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
1317 1318
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1319 1320 1321 1322 1323
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1324 1325 1326 1327 1328
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1329
            vars_append.append(
1330
                current_block.create_var(
W
WeiXin 已提交
1331 1332 1333 1334 1335 1336
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
1337 1338 1339
                    set_need_check_feed=var_desc.need_check_feed(),
                )
            )
W
WeiXin 已提交
1340 1341 1342
    return vars_append


1343 1344
class TranslatedLayer(layers.Layer):
    """
1345 1346
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1347
    general Layer object in eval or train mode.
1348

1349
    .. note:
1350
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1351 1352 1353 1354 1355

    Examples:
        .. code-block:: python

            import numpy as np
1356 1357 1358
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1359

1360 1361 1362
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1363

1364 1365 1366 1367 1368 1369 1370
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1371

1372 1373 1374 1375
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1376

1377 1378
                def __len__(self):
                    return self.num_samples
1379

1380 1381
            class LinearNet(nn.Layer):
                def __init__(self):
1382
                    super().__init__()
1383
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1384

1385
                @paddle.jit.to_static
1386 1387 1388
                def forward(self, x):
                    return self._linear(x)

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1400 1401
            # 1. train & save model.

1402 1403 1404 1405
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1406

1407 1408 1409 1410 1411 1412 1413
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1414

1415 1416
            # train
            train(layer, loader, loss_fn, adam)
1417

1418
            # save
1419
            model_path = "linear.example.model"
1420
            paddle.jit.save(layer, model_path)
1421 1422

            # 2. load model as TranslatedLayer
1423 1424 1425 1426

            # load
            translated_layer = paddle.jit.load(model_path)

1427 1428
            # inference
            translated_layer.eval()
1429
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1430
            pred = translated_layer(x)
1431

1432 1433
            # fine-tune
            translated_layer.train()
1434 1435
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1436 1437 1438 1439

    """

    def __init__(self, programs, persistable_vars):
1440
        super().__init__()
1441 1442 1443 1444 1445 1446 1447

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1448
                "TranslatedLayer need to use persistable variable dict for initialization."
1449 1450 1451 1452
            )

        self._program_holder_dict = programs

1453 1454 1455 1456 1457 1458 1459
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
        # in the form of `self.**.**``, but the ParamBase or BarBase
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
1460
        self._persistable_var_name_dict = {}
1461 1462 1463
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
1464 1465 1466
                if isinstance(
                    var, (framework.ParamBase, framework.EagerParamBase)
                ):
1467 1468 1469
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
1470
                elif isinstance(var, (core.VarBase, core.eager.Tensor)):
1471 1472 1473 1474 1475 1476 1477
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1478 1479

        self._is_test = True
W
WeiXin 已提交
1480
        self._input_args_names = None
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1498
        # 2. load layer parameters & buffers
1499
        persistable_vars = _construct_params_and_buffers(
1500 1501
            model_path, programs, params_filename
        )
1502 1503 1504 1505 1506 1507

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1508 1509 1510 1511
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1512
            setattr(
1513 1514
                TranslatedLayer,
                method_name,
1515
                TranslatedLayer._execution_method_creator(
1516 1517 1518
                    method_name, program_holder
                ),
            )
1519 1520 1521 1522 1523 1524 1525 1526

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
W
WeiXin 已提交
1527 1528 1529 1530
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1531
            if _non_static_mode():
W
WeiXin 已提交
1532 1533 1534 1535 1536 1537 1538
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
1539 1540
                    core.ProgramDesc(program_holder.infer_program)
                )
W
WeiXin 已提交
1541 1542 1543 1544
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1545 1546 1547

    def train(self):
        self._is_test = False
1548
        self.training = True
1549 1550 1551

    def eval(self):
        self._is_test = True
1552
        self.training = False
1553 1554 1555 1556 1557 1558 1559 1560

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1561

1562 1563 1564 1565 1566
        Returns:
            Program

        Examples:
            .. code-block:: python
1567

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
1595
                        super().__init__()
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1640
        program_holder = self._get_program_holder(method_name)
1641 1642 1643 1644 1645 1646 1647

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1648 1649 1650 1651 1652

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
1653 1654 1655
                "The method `%s` does not exist in loaded TranslatedLayer."
                % method_name
            )
1656 1657 1658 1659 1660 1661 1662 1663 1664
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1665 1666 1667 1668 1669
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1681 1682
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1683
            # construct the description of Output tensor
1684 1685 1686 1687 1688
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1689 1690 1691
            output_spec.append(spec)

        return output_spec