lod_tensor_test.cc 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at
  http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.
*/

#include "paddle/framework/lod_tensor.h"

#include <glog/logging.h>
#include <gtest/gtest.h>
18
#include <algorithm>
19
#include <memory>
20
#include <vector>
21 22 23 24

namespace paddle {
namespace framework {

25 26
const int kLodTensorSize = 20 * 128;

27
class LoDTensorTester : public ::testing::Test {
28 29 30 31 32 33 34
 public:
  virtual void SetUp() override {
    // tensor's batch_size: 30
    // 3 levels
    // 0 10 20
    // 0 5 10 15 20
    // 0 2 5 7 10 12 15 20
35
    LoD lod;
36 37
    lod.push_back(std::vector<size_t>{0, 2, 3});
    lod.push_back(std::vector<size_t>{0, 2, 5, 8});
38
    lod.push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20});
39

40 41
    ASSERT_EQ(lod.size(), 3UL);

42
    lod_tensor_.Resize({20 /*batch size*/, 128 /*dim*/});
43
    // malloc memory
44 45 46 47
    float* dst_ptr = lod_tensor_.mutable_data<float>(place);
    for (int i = 0; i < kLodTensorSize; ++i) {
      dst_ptr[i] = i;
    }
48

49
    lod_tensor_.set_lod(lod);
50 51 52 53
  }

 protected:
  platform::CPUPlace place;
54
  LoDTensor lod_tensor_;
55 56
};

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
TEST(LodExpand, test) {
  LoD lod{{0, 2}};
  LoDTensor tensor;
  tensor.set_lod(lod);
  tensor.Resize({2, 1});
  tensor.mutable_data<float>(platform::CPUPlace());
  tensor.data<float>()[0] = 0;
  tensor.data<float>()[1] = 1;

  LoD target;
  target.emplace_back(std::vector<size_t>{0, 3, 5});
  auto new_tensor = LodExpand<float>(tensor, target, 0UL, platform::CPUPlace());
  std::vector<int> result{{0, 0, 0, 1, 1}};
  for (size_t i = 0; i < 5; i++) {
    ASSERT_EQ(new_tensor.data<float>()[i], result[i]);
  }
73 74
}

75 76
TEST(LoD, GetFineGrainedLoDLength) {
  LoD lod;
77 78
  lod.push_back(std::vector<size_t>({0, 2, 4, 5}));
  lod.push_back(std::vector<size_t>({0, 1, 6, 8, 10, 11}));
79
  lod.push_back(
80
      std::vector<size_t>({0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26, 29}));
81

82 83 84 85 86
  auto lod_and_offset =
      paddle::framework::GetSubLoDAndAbsoluteOffset(lod, 1, 2, 0);
  LoD lod_length = lod_and_offset.first;
  size_t start_offset = lod_and_offset.second.first;
  size_t end_offset = lod_and_offset.second.second;
87

88
  LoD expected;
89 90 91 92 93
  expected.push_back(std::vector<size_t>{2});
  expected.push_back(std::vector<size_t>{2, 2});
  expected.push_back(std::vector<size_t>{2, 3, 4, 2});
  EXPECT_EQ(lod_length, expected);
  EXPECT_EQ(start_offset, 15UL);
94
  EXPECT_EQ(end_offset, 26UL);
95 96 97
}

TEST(LoD, AppendLoD) {
98 99 100 101
  LoD lod_lens;
  lod_lens.push_back(std::vector<size_t>({2}));
  lod_lens.push_back(std::vector<size_t>({2, 2}));
  lod_lens.push_back(std::vector<size_t>({2, 3, 4, 2}));
102 103

  LoD origin;
104 105 106
  origin.push_back(std::vector<size_t>({0, 2}));
  origin.push_back(std::vector<size_t>({0, 1, 6}));
  origin.push_back(std::vector<size_t>({0, 2, 5, 7, 10, 12, 15}));
107 108 109 110

  paddle::framework::AppendLoD(&origin, lod_lens);

  LoD expected;
111 112
  expected.push_back(std::vector<size_t>({0, 2, 4}));
  expected.push_back(std::vector<size_t>({0, 1, 6, 8, 10}));
113
  expected.push_back(
114
      std::vector<size_t>({0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26}));
115 116 117
  EXPECT_EQ(origin, expected);
}

118 119
}  // namespace framework
}  // namespace paddle