Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9a0233de
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9a0233de
编写于
10月 25, 2017
作者:
Y
Yan Chunwei
提交者:
GitHub
10月 25, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Feature/tensor array lod pack (#5007)
上级
5d536bcc
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
323 addition
and
9 deletion
+323
-9
paddle/framework/lod_tensor.cc
paddle/framework/lod_tensor.cc
+16
-0
paddle/framework/lod_tensor.h
paddle/framework/lod_tensor.h
+43
-0
paddle/framework/lod_tensor_test.cc
paddle/framework/lod_tensor_test.cc
+43
-6
paddle/framework/tensor_array.cc
paddle/framework/tensor_array.cc
+156
-3
paddle/framework/tensor_array.h
paddle/framework/tensor_array.h
+13
-0
paddle/framework/tensor_array_test.cc
paddle/framework/tensor_array_test.cc
+52
-0
未找到文件。
paddle/framework/lod_tensor.cc
浏览文件 @
9a0233de
...
...
@@ -106,6 +106,15 @@ size_t LoDTensor::NumElements(size_t level, size_t idx) const {
return
lod_
[
level
][
idx
+
1
]
-
lod_
[
level
][
idx
];
}
size_t
LoDTensor
::
NumInstancesInElement
(
size_t
level
,
size_t
idx
)
const
{
PADDLE_ENFORCE_LT
(
level
,
NumLevels
());
PADDLE_ENFORCE_LT
(
idx
,
NumElements
(
level
));
auto
abs_lod
=
ToAbsOffset
(
lod
());
size_t
begin
=
abs_lod
[
level
][
idx
];
size_t
end
=
abs_lod
[
level
][
idx
+
1
];
return
end
-
begin
;
}
void
LoDTensor
::
ShrinkLevels
(
size_t
level_begin
,
size_t
level_end
)
{
auto
new_lod
=
framework
::
SliceLevels
(
lod_
,
level_begin
,
level_end
);
lod_
=
new_lod
;
...
...
@@ -117,8 +126,15 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
PADDLE_ENFORCE_LT
(
elem_begin
,
NumElements
(
level
));
PADDLE_ENFORCE_LT
(
elem_end
,
NumElements
(
level
)
+
1
);
auto
abs_lod
=
framework
::
ToAbsOffset
(
lod
());
auto
new_lod
=
framework
::
SliceInLevel
(
lod_
,
level
,
elem_begin
,
elem_end
);
lod_
=
new_lod
;
// slice the underlying tensor
size_t
begin
=
abs_lod
[
level
][
elem_begin
];
size_t
end
=
abs_lod
[
level
][
elem_end
];
PADDLE_ENFORCE_LT
(
begin
,
end
,
"Cannot shrink, the result tensor is empty."
);
ShareDataWith
(
Slice
(
begin
,
end
));
}
std
::
string
LoDTensor
::
SerializeToString
()
const
{
...
...
paddle/framework/lod_tensor.h
浏览文件 @
9a0233de
...
...
@@ -122,6 +122,12 @@ class LoDTensor : public Tensor {
*/
size_t
NumElements
(
size_t
level
,
size_t
idx
)
const
;
/*
* Get the number of instances in the underlying tensor in the `idx`-th
* element.
*/
size_t
NumInstancesInElement
(
size_t
level
,
size_t
idx
)
const
;
/*
* Shrink levels[level_begin:level_end]
*/
...
...
@@ -157,5 +163,42 @@ class LoDTensor : public Tensor {
private:
LoD
lod_
;
};
/*
* Expand the `source` to fit the LoD of `lod`. For example, a `source`
* LoDTensor is
* - LoD: [0, 2]
* - tensor: [a0, a1]
* a `lod` is
* - LoD: [0 3 5]
* returns a new LoDTensor
* - [a0 a0 a0 a1 a1]
*/
template
<
typename
T
>
LoDTensor
LodExpand
(
const
LoDTensor
&
source
,
const
LoD
&
lod
,
size_t
level
,
const
platform
::
Place
&
place
)
{
LoD
abs_lod
=
ToAbsOffset
(
lod
);
const
auto
&
lod_level
=
lod
[
level
];
size_t
num_instances
=
source
.
dims
()[
0
];
// new tensor
LoDTensor
tensor
;
tensor
.
set_lod
(
lod
);
auto
dims
=
source
.
dims
();
dims
[
0
]
=
lod_level
.
back
();
tensor
.
Resize
(
dims
);
tensor
.
mutable_data
<
T
>
(
place
);
PADDLE_ENFORCE_EQ
(
num_instances
,
lod_level
.
size
()
-
1
);
for
(
size_t
ins
=
0
;
ins
<
num_instances
;
ins
++
)
{
for
(
size_t
elem
=
lod_level
[
ins
];
elem
<
lod_level
[
ins
+
1
];
elem
++
)
{
tensor
.
Slice
(
elem
,
elem
+
1
)
.
CopyFrom
(
source
.
Slice
(
ins
,
ins
+
1
),
platform
::
CPUPlace
(),
platform
::
CPUDeviceContext
());
}
}
return
tensor
;
}
}
// namespace framework
}
// namespace paddle
paddle/framework/lod_tensor_test.cc
浏览文件 @
9a0233de
...
...
@@ -92,11 +92,14 @@ TEST_F(LoDTensorTester, ShrinkInLevel) {
size_t
level
=
0
;
LoDTensor
new_lod_tensor
=
lod_tensor_
;
new_lod_tensor
.
ShrinkInLevel
(
level
,
0
,
1
);
EXPECT_EQ
(
new_lod_tensor
.
NumLevels
(),
3UL
);
EXPECT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
1UL
);
EXPECT_EQ
(
new_lod_tensor
.
NumElements
(
1
),
2UL
);
EXPECT_EQ
(
new_lod_tensor
.
NumElements
(
2
),
5UL
);
ASSERT_EQ
(
new_lod_tensor
.
data
<
float
>
(),
lod_tensor_
.
data
<
float
>
());
ASSERT_EQ
(
new_lod_tensor
.
NumLevels
(),
3UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
1UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
1
),
2UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
2
),
5UL
);
ASSERT_EQ
(
new_lod_tensor
.
dims
()[
0
],
12
);
for
(
int
i
=
0
;
i
<
12
*
128
;
i
++
)
{
ASSERT_EQ
(
new_lod_tensor
.
data
<
float
>
()[
i
],
i
);
}
level
=
1
;
new_lod_tensor
=
lod_tensor_
;
...
...
@@ -104,7 +107,41 @@ TEST_F(LoDTensorTester, ShrinkInLevel) {
ASSERT_EQ
(
new_lod_tensor
.
NumLevels
(),
2UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
1UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
1
),
3UL
);
ASSERT_EQ
(
new_lod_tensor
.
data
<
float
>
(),
lod_tensor_
.
data
<
float
>
());
ASSERT_EQ
(
new_lod_tensor
.
dims
()[
0
],
7
);
for
(
int
i
=
5
*
128
;
i
<
12
*
128
;
i
++
)
{
ASSERT_EQ
(
new_lod_tensor
.
data
<
float
>
()[
i
-
5
*
128
],
i
);
}
LoDTensor
t1
;
t1
.
set_lod
(
lod_tensor_
.
lod
());
t1
.
ShareDataWith
(
lod_tensor_
);
LoDTensor
t2
;
t2
.
set_lod
(
lod_tensor_
.
lod
());
t2
.
ShareDataWith
(
lod_tensor_
);
t1
.
ShrinkInLevel
(
0
,
1
,
2
);
t2
.
ShrinkInLevel
(
0
,
0
,
1
);
EXPECT_NE
(
t1
.
data
<
float
>
(),
t2
.
data
<
float
>
());
EXPECT_NE
(
t1
.
data
<
float
>
(),
lod_tensor_
.
data
<
float
>
());
}
TEST
(
LodExpand
,
test
)
{
LoD
lod
{{
0
,
2
}};
LoDTensor
tensor
;
tensor
.
set_lod
(
lod
);
tensor
.
Resize
({
2
,
1
});
tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
tensor
.
data
<
float
>
()[
0
]
=
0
;
tensor
.
data
<
float
>
()[
1
]
=
1
;
LoD
target
;
target
.
emplace_back
(
std
::
vector
<
size_t
>
{
0
,
3
,
5
});
auto
new_tensor
=
LodExpand
<
float
>
(
tensor
,
target
,
0UL
,
platform
::
CPUPlace
());
std
::
vector
<
int
>
result
{{
0
,
0
,
0
,
1
,
1
}};
for
(
size_t
i
=
0
;
i
<
5
;
i
++
)
{
ASSERT_EQ
(
new_tensor
.
data
<
float
>
()[
i
],
result
[
i
]);
}
}
TEST_F
(
LoDTensorTester
,
SerializeDeserialize
)
{
...
...
paddle/framework/tensor_array.cc
浏览文件 @
9a0233de
...
...
@@ -20,6 +20,8 @@
#include <algorithm>
#include <limits>
#include "paddle/framework/eigen.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -104,10 +106,10 @@ void TensorArray::Write(size_t index, const LoDTensor& value) {
values_
.
resize
(
index
+
1
);
}
values_
[
index
].
set_lod
(
value
.
lod
());
values_
[
index
].
Resize
(
value
.
dims
());
values_
[
index
].
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
values_
[
index
].
CopyFrom
(
value
,
platform
::
CPUPlace
(),
platform
::
CPUDeviceContext
());
values_
[
index
].
mutable_data
<
value_type
>
(
value
.
place
());
values_
[
index
].
CopyFrom
(
value
,
value
.
place
(),
platform
::
CPUDeviceContext
());
}
void
TensorArray
::
WriteShared
(
size_t
index
,
const
LoDTensor
&
value
)
{
...
...
@@ -116,6 +118,7 @@ void TensorArray::WriteShared(size_t index, const LoDTensor& value) {
values_
.
resize
(
index
+
1
);
}
values_
[
index
].
set_lod
(
value
.
lod
());
values_
[
index
].
ShareDataWith
(
value
);
}
...
...
@@ -144,6 +147,156 @@ DySeqMetaBatch TensorArray::Unpack(const LoDTensor& source, int level,
return
unpacker
.
meta
;
}
LoDTensor
TensorArray
::
LodPack
(
size_t
level
)
const
{
PADDLE_ENFORCE_GT
(
size
(),
0UL
,
"no time step exists"
);
// the levels should be no less than 2
LoDTensor
merged
;
const
LoDTensor
*
pre
,
*
cur
;
pre
=
&
Read
(
0
);
for
(
size_t
step
=
1
;
step
<
size
();
step
++
)
{
cur
=
&
Read
(
step
);
PADDLE_ENFORCE_GT
(
cur
->
NumLevels
(),
0
);
PADDLE_ENFORCE_GT
(
pre
->
NumLevels
(),
0
);
PADDLE_ENFORCE_EQ
(
pre
->
NumLevels
(),
cur
->
NumLevels
());
PADDLE_ENFORCE_EQ
(
pre
->
NumElements
(
level
),
cur
->
NumElements
(
level
));
merged
=
LodPackTwo
(
*
pre
,
*
cur
,
level
);
pre
=
&
merged
;
}
return
merged
;
}
/*
* NOTE currently, only the lowest level supports packing.
* The lowest LoD will be changed, while the relative offsets in levels above
* stay unchanged.
*
* previous step : [0] [1] [3]
* current step: [0 1 2] [2 3] []
* packed to
* [0 0] [0 1] [0 2] [1 2] [1 3] [3]
*/
LoDTensor
TensorArray
::
LodPackTwo
(
const
LoDTensor
&
pre
,
const
LoDTensor
&
cur
,
size_t
level
)
const
{
PADDLE_ENFORCE_EQ
(
pre
.
NumLevels
(),
cur
.
NumLevels
());
PADDLE_ENFORCE_EQ
(
pre
.
NumLevels
(),
level
+
1
,
"Only the lowest LoD level supports pack temporarily."
);
// calculate the result tensor's shape first
size_t
num_instances
=
0
;
for
(
size_t
elem
=
0
;
elem
<
pre
.
NumElements
(
level
);
elem
++
)
{
size_t
prefix_size
=
pre
.
NumElements
(
level
,
elem
);
size_t
num_candidates
=
cur
.
NumElements
(
level
,
elem
);
if
(
num_candidates
>
0
)
{
num_instances
+=
num_candidates
*
(
prefix_size
+
1
);
}
else
{
num_instances
+=
prefix_size
;
}
}
auto
res_dims
=
pre
.
dims
();
res_dims
[
0
]
=
num_instances
;
LoDTensor
result
;
result
.
Resize
(
res_dims
);
result
.
mutable_data
<
value_type
>
(
cur
.
place
());
Vector
<
size_t
>
last_lod_level
;
// copy data
size_t
index
=
0
;
last_lod_level
.
push_back
(
index
);
for
(
size_t
elem
=
0
;
elem
<
pre
.
NumElements
(
level
);
elem
++
)
{
size_t
prefix_size
=
pre
.
NumElements
(
level
,
elem
);
size_t
num_candidates
=
cur
.
NumElements
(
level
,
elem
);
// slice the prefix Tensor
LoDTensor
prefix
=
pre
;
prefix
.
ShrinkInLevel
(
level
,
elem
,
elem
+
1
);
LoDTensor
candidate
=
cur
;
if
(
num_candidates
>
0
)
{
candidate
.
ShrinkInLevel
(
level
,
elem
,
elem
+
1
);
}
else
{
// just push prefix
result
.
Slice
(
index
,
index
+
prefix_size
)
.
CopyFrom
(
prefix
,
result
.
place
(),
platform
::
CPUDeviceContext
());
index
+=
prefix_size
;
last_lod_level
.
push_back
(
index
);
}
for
(
size_t
candi
=
0
;
candi
<
num_candidates
;
candi
++
)
{
// TODO(superjom) support GPU
result
.
Slice
(
index
,
index
+
prefix_size
)
.
CopyFrom
(
prefix
,
result
.
place
(),
platform
::
CPUDeviceContext
());
index
+=
prefix_size
;
// copy candidate record
result
.
Slice
(
index
,
index
+
1
)
.
CopyFrom
(
candidate
.
Slice
(
candi
,
candi
+
1
),
result
.
place
(),
platform
::
CPUDeviceContext
());
index
++
;
last_lod_level
.
push_back
(
index
);
}
}
// update lod
auto
lod
=
cur
.
lod
();
lod
.
back
()
=
last_lod_level
;
result
.
set_lod
(
lod
);
return
result
;
}
/*
* source [0 1 2] [3 4] [5 6 7] will be transformd to a list of LoDTensors such
* as
* [0 3 5] [1 4 6] [2 7] with 1-level LoDs:
* - [0 1 2 3]
* - [0 1 2 3]
* - [0 1 1 2], the [1,1) here means the second sequence is empty
*
* NOTE Unpack a LoDTensor in this approach may result in a big LoD.
*/
void
TensorArray
::
LodUnpack
(
const
LoDTensor
&
source
,
size_t
level
)
{
PADDLE_ENFORCE_EQ
(
level
,
source
.
NumLevels
()
-
1
,
"only the lowest LoD level supports unpack."
);
int
non_empty_instances
=
-
1
;
size_t
index
=
0
;
Vector
<
size_t
>
lowest_lod_level
;
lowest_lod_level
.
push_back
(
index
);
for
(
size_t
step
=
0
;
non_empty_instances
>
0
||
non_empty_instances
==
-
1
;
step
++
)
{
size_t
num_instances
=
0
;
for
(
size_t
id
=
0
;
id
<
source
.
NumElements
(
level
);
id
++
)
{
auto
instance
=
source
;
instance
.
ShrinkInLevel
(
level
,
id
,
id
+
1
);
if
(
static_cast
<
size_t
>
(
instance
.
dims
()[
0
])
>
step
)
{
num_instances
++
;
index
++
;
}
lowest_lod_level
.
push_back
(
index
);
}
// create tensor for this time step
LoDTensor
tensor
;
auto
dims
=
source
.
dims
();
dims
[
0
]
=
num_instances
;
// set lod
auto
lod
=
source
.
lod
();
lod
.
back
()
=
lowest_lod_level
;
tensor
.
set_lod
(
lod
);
index
=
0
;
for
(
size_t
id
=
0
;
id
<
source
.
NumElements
(
level
);
id
++
)
{
auto
instance
=
source
;
instance
.
ShrinkInLevel
(
level
,
id
,
id
+
1
);
if
(
static_cast
<
size_t
>
(
instance
.
dims
()[
0
])
>
step
)
{
// copy this instance
tensor
.
Slice
(
index
,
index
+
1
)
.
CopyFrom
(
instance
.
Slice
(
step
,
step
+
1
),
tensor
.
place
(),
platform
::
CPUDeviceContext
());
index
++
;
}
}
Write
(
step
,
tensor
);
}
}
LoDTensor
TensorArray
::
Stack
()
const
{
LoDTensor
result
;
if
(
size
()
==
0
)
return
result
;
...
...
paddle/framework/tensor_array.h
浏览文件 @
9a0233de
...
...
@@ -86,6 +86,16 @@ class TensorArray {
*/
DySeqMetaBatch
Unpack
(
const
LoDTensor
&
source
,
int
level
,
bool
length_desend
);
/*
* Pack an array of LoDTensors to a LoDTensor.
*/
LoDTensor
LodPack
(
size_t
level
)
const
;
/*
* Unpack a LoDTensor to an array of LoDTensors.
*/
void
LodUnpack
(
const
LoDTensor
&
source
,
size_t
level
);
/*
* Pack the values into a tensor with rank one higher than each tensor in
* values.
...
...
@@ -111,6 +121,9 @@ class TensorArray {
protected:
void
Unstack
(
const
LoDTensor
&
source
,
bool
data_shared
)
const
;
LoDTensor
LodPackTwo
(
const
LoDTensor
&
pre
,
const
LoDTensor
&
cur
,
size_t
level
)
const
;
private:
mutable
std
::
vector
<
LoDTensor
>
values_
;
};
// class TensorArray
...
...
paddle/framework/tensor_array_test.cc
浏览文件 @
9a0233de
...
...
@@ -126,5 +126,57 @@ TEST_F(TensorArrayTester, size) {
ASSERT_EQ
(
ta
.
size
(),
static_cast
<
size_t
>
(
batch_size
));
}
TEST
(
TensorArray
,
LodPack
)
{
// three time steps, each step stores a LoDTensors
// - [0] [1]
// - [2 3], [4 5]
// - [6 7] [] [8], [9, 10]
// try to get a LoDTensor with content:
// - [0 2 6]
// - [0 2 7]
// - [0 3]
// - [1 4 8]
// - [1 5 9]
// - [1 5 10]
std
::
array
<
LoDTensor
,
3
>
tensors
;
tensors
[
0
].
Resize
(
make_ddim
({
2
,
1
}));
tensors
[
1
].
Resize
(
make_ddim
({
4
,
1
}));
tensors
[
2
].
Resize
(
make_ddim
({
5
,
1
}));
int
index
=
0
;
for
(
auto
&
t
:
tensors
)
{
t
.
mutable_data
<
int
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
t
.
dims
()[
0
];
i
++
)
{
t
.
data
<
int
>
()[
i
]
=
index
;
index
++
;
}
}
std
::
array
<
LoD
,
3
>
lods
;
std
::
vector
<
std
::
vector
<
size_t
>>
levels
{
{
0
,
1
,
2
},
{
0
,
2
,
4
},
{
0
,
2
,
2
,
3
,
5
}};
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
lods
[
i
].
emplace_back
(
levels
[
i
].
begin
(),
levels
[
i
].
end
());
}
TensorArray
ta
;
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
tensors
[
i
].
set_lod
(
lods
[
i
]);
ta
.
Write
(
i
,
tensors
[
i
]);
}
auto
merged
=
ta
.
LodPack
(
0
);
std
::
vector
<
int
>
target_tensor_data
{{
0
,
2
,
6
,
// 0
0
,
2
,
7
,
// 1
0
,
3
,
// 2
1
,
4
,
8
,
// 3
1
,
5
,
9
,
// 5
1
,
5
,
10
}};
EXPECT_EQ
(
merged
.
dims
()[
0
],
(
int
)
target_tensor_data
.
size
());
for
(
size_t
i
=
0
;
i
<
target_tensor_data
.
size
();
i
++
)
{
EXPECT_EQ
(
target_tensor_data
[
i
],
merged
.
data
<
int
>
()[
i
]);
}
}
}
// namespace framework
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录