huber_loss_op.cc 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/huber_loss_op.h"
16 17 18
#include <memory>
#include <string>
#include <vector>
Y
yangyaming 已提交
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class HuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
28 29 30 31
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) must be initialized.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                      "Input(Y) must be initialized.");
Y
yangyaming 已提交
32

33 34
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
35 36 37 38 39 40 41 42 43
    int rank = x_dims.size();

    if (rank == y_dims.size()) {
      PADDLE_ENFORCE_EQ(y_dims[rank - 1], 1U,
                        "The last dimension of Input(Y) should be equal to 1.");
    } else {
      PADDLE_ENFORCE_EQ(rank, y_dims.size() + 1,
                        "The rank of Input(X) should be equal to "
                        "the rank of Input(Y) plus 1.");
P
phlrain 已提交
44
    }
45 46 47 48 49 50 51
    bool contain_unknown_dim = framework::contain_unknown_dim(x_dims) ||
                               framework::contain_unknown_dim(y_dims);
    if (ctx->IsRuntime() || !contain_unknown_dim) {
      PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                        framework::slice_ddim(y_dims, 0, rank - 1),
                        "The Input(X) and Input(Label) should have the same "
                        "shape except the last dimension.");
P
phlrain 已提交
52
    }
Y
yangyaming 已提交
53

54 55 56
    auto out_dims = y_dims;
    ctx->SetOutputDim("Residual", out_dims);
    ctx->SetOutputDim("Out", out_dims);
57
    ctx->ShareLoD("X", "Out");
Y
yangyaming 已提交
58 59 60 61 62 63
  }
};

template <typename AttrType>
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
64
  void Make() override {
65 66 67 68 69 70
    AddInput("X",
             "The input value of huber loss op."
             "X is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
             "The target value of huber loss op."
             "Y is a 2-D tensor with shape [batch_size, 1].");
71
    AddOutput("Residual",
72
              "Intermediate tensor to cache residual value between Y and X."
73
              "The shape is same as Input(X) and will be reused in backward.")
Y
yangyaming 已提交
74
        .AsIntermediate();
75
    AddOutput("Out",
K
kexinzhao 已提交
76 77
              "The output tensor with shape [batch_size, 1] "
              "which represents the huber loss.");
Y
yangyaming 已提交
78 79
    AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
    AddComment(R"DOC(
K
kexinzhao 已提交
80 81
HuberLoss Operator.

82 83 84 85
Huber loss is a loss function used in robust regression. We define X as the
input value and Y as the target value. Huber loss can evaluate the fitness of
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
shape of X and Y are [batch_size, 1]. The equation is:
Y
yangyaming 已提交
86

87
$$
Y
yangyaming 已提交
88
Out_{\delta}(X, Y)_i =
89
\begin{cases}
Y
yangyaming 已提交
90 91 92
0.5 * (Y_i - X_i)^2,
\quad |Y_i - X_i| \leq \delta \\
\delta * (|Y_i - X_i| - 0.5 * \delta),
93
\quad otherwise
94
\end{cases}
95
$$
Y
yangyaming 已提交
96

Y
yangyaming 已提交
97 98 99
In the above equation, $Out_\delta(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.

Y
yangyaming 已提交
100 101 102 103 104 105 106 107
)DOC");
  }
};

class HuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

108
  void InferShape(framework::InferShapeContext* ctx) const override {
109 110
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) should not be null.");
111 112 113 114 115 116

    auto residual_dims = ctx->GetInputDim("Residual");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
117
      ctx->SetOutputDim(x_grad_name, residual_dims);
118 119
    }
    if (ctx->HasOutput(y_grad_name)) {
120
      ctx->SetOutputDim(y_grad_name, residual_dims);
121
    }
Y
yangyaming 已提交
122 123 124
  }
};

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
class HuberLossGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("huber_loss_grad");
    op->SetInput("Residual", Output("Residual"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

Y
yangyaming 已提交
142 143 144 145
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
146
REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
147
                  ops::HuberLossGradOpDescMaker);
148
REGISTER_OPERATOR(huber_loss_grad, ops::HuberLossGradOp);
Q
QI JUN 已提交
149
REGISTER_OP_CPU_KERNEL(
150 151
    huber_loss, ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HuberLossKernel<paddle::platform::CPUDeviceContext, double>);
Y
yangyaming 已提交
152 153
REGISTER_OP_CPU_KERNEL(
    huber_loss_grad,
154 155
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, double>);