fused_gemm_epilogue_op.cu 27.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

16
#include "paddle/fluid/operators/fused/fused_gemm_epilogue_op.h"
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
19
#include "paddle/fluid/framework/scope_guard.h"
20
#include "paddle/fluid/platform/bfloat16.h"
21 22 23 24 25 26 27 28 29 30 31 32
#include "paddle/fluid/platform/dynload/cublasLt.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class FusedGemmEpilogueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
L
Leo Chen 已提交
33
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
34 35 36 37 38 39 40 41 42 43 44 45

    const Tensor* x = ctx.Input<Tensor>("X");
    const Tensor* y = ctx.Input<Tensor>("Y");
    const Tensor* bias = ctx.Input<Tensor>("Bias");

    Tensor* out = ctx.Output<Tensor>("Out");
    Tensor* reserve_space = ctx.Output<Tensor>("ReserveSpace");

    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

    std::string activation = ctx.Attr<std::string>("activation");
46 47
    VLOG(10) << "trans_x = " << trans_x << " , trans_y = " << trans_y
             << " , activation = " << activation;
48 49
    bool enable_auxiliary = reserve_space == nullptr ? false : true;

50
    dev_ctx.Alloc<T>(out, out->numel() * sizeof(T));
51 52 53 54
    auto* out_data = out->data<T>();

    auto x_mat_dims =
        phi::flatten_to_2d(x->dims(), trans_x ? 1 : x->dims().size() - 1);
55
    // (M * K) * (K * N)
56 57 58 59 60 61 62 63 64 65
    int64_t M = trans_x ? x_mat_dims[1] : x_mat_dims[0];
    int64_t K = trans_y ? y->dims()[1] : y->dims()[0];
    int64_t N = trans_y ? y->dims()[0] : y->dims()[1];

    cudaDataType_t mat_type = CUDA_R_32F;
    cudaDataType_t scale_type = CUDA_R_32F;
    cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
    if (std::is_same<T, paddle::platform::float16>::value) {
      mat_type = CUDA_R_16F;
    }
66 67 68
    if (std::is_same<T, platform::bfloat16>::value) {
      mat_type = CUDA_R_16BF;
    }
69 70 71 72 73 74 75 76 77 78 79 80 81
    if (std::is_same<T, double>::value) {
      mat_type = CUDA_R_64F;
      scale_type = CUDA_R_64F;
      compute_type = CUBLAS_COMPUTE_64F;
    }

    cublasLtMatmulDesc_t operation_desc = NULL;
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
        &operation_desc, compute_type, scale_type));
    cublasOperation_t transx = trans_x ? CUBLAS_OP_T : CUBLAS_OP_N;
    cublasOperation_t transy = trans_y ? CUBLAS_OP_T : CUBLAS_OP_N;
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
82 83 84
            operation_desc,
            CUBLASLT_MATMUL_DESC_TRANSB,
            &transx,
85 86 87
            sizeof(transx)));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
88 89 90
            operation_desc,
            CUBLASLT_MATMUL_DESC_TRANSA,
            &transy,
91 92 93 94 95 96
            sizeof(transy)));

    cublasLtEpilogue_t epiloque_func =
        get_epilogue_type_(activation, enable_auxiliary);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
97 98 99
            operation_desc,
            CUBLASLT_MATMUL_DESC_EPILOGUE,
            &epiloque_func,
100 101 102 103
            sizeof(epiloque_func)));
    const T* bias_data = bias->data<T>();
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
104 105 106
            operation_desc,
            CUBLASLT_MATMUL_DESC_BIAS_POINTER,
            &bias_data,
107 108 109
            sizeof(bias_data)));

    if (enable_auxiliary && activation != "none") {
110 111
      // Note (Ming Huang): The initialization of ReseveSpace is happened in the
      // dev_ctx.Alloc. Therefore, we set real date type up here.
112
      if (activation == "relu") {
113 114 115 116 117
        paddle::experimental::DataType rs_type =
            paddle::experimental::DataType::BOOL;
        size_t reserve_space_size =
            phi::product(reserve_space->dims()) * SizeOf(rs_type);
        dev_ctx.Alloc(reserve_space, rs_type, reserve_space_size);
118
      } else {
119 120 121
        size_t reserve_space_size =
            phi::product(reserve_space->dims()) * sizeof(T);
        dev_ctx.Alloc<T>(reserve_space, reserve_space_size);
122
      }
123 124

      void* aux_data = reserve_space->data();
125 126 127

      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
128 129 130 131
              operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
              &aux_data,
              sizeof(aux_data)));
132
      int64_t aux_ld = N;
133 134
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
135 136 137
              operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
              &aux_ld,
138
              sizeof(aux_ld)));
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    }

    cublasLtMatrixLayout_t x_desc = NULL, y_desc = NULL, out_desc = NULL;
    if (trans_x)
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, M, K, M));
    else
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, K, M, K));
    if (trans_y)
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, K, N, K));
    else
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, N, K, N));
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
        &out_desc, mat_type, N, M, N));

    cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
S
sneaxiy 已提交
158 159 160
    // NOTE(zengjinle): I do not know whether the 4MB workspace size is
    // "enough". I just followed the settings from the NVIDIA MLPerf BERT code.
    size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024;
161
    cudaStream_t stream = dev_ctx.stream();
L
Leo Chen 已提交
162 163 164 165
    memory::allocation::AllocationPtr workspace = memory::Alloc(
        dev_ctx.GetPlace(),
        workspace_size,
        phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
166 167 168 169 170 171 172 173 174 175 176 177

    double alpha64 = 1.0, beta64 = 0.0;
    float alpha32 = 1.0f, beta32 = 0.0f;
    void *alpha = nullptr, *beta = nullptr;
    if (std::is_same<T, double>::value) {
      alpha = &alpha64;
      beta = &beta64;
    } else {
      alpha = &alpha32;
      beta = &beta32;
    }

178 179 180
    const auto* y_data = y->data<T>();
    const auto* x_data = x->data<T>();

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    auto algo = GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                              operation_desc,
                                                              y_desc,
                                                              x_desc,
                                                              out_desc,
                                                              alpha,
                                                              beta,
                                                              y_data,
                                                              x_data,
                                                              out_data,
                                                              stream,
                                                              workspace->ptr(),
                                                              workspace_size);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmul(lt_handle,
                                          operation_desc,
                                          alpha,
                                          y_data,
                                          y_desc,
                                          x_data,
                                          x_desc,
                                          beta,
                                          out_data,
                                          out_desc,
                                          out_data,
                                          out_desc,
                                          algo,
                                          workspace->ptr(),
                                          workspace_size,
                                          stream));
211 212 213 214 215 216 217 218 219

    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescDestroy(operation_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(y_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(x_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(out_desc));
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  }

 private:
  static cublasLtEpilogue_t get_epilogue_type_(const std::string& activation,
                                               bool enable_auxiliary) {
    if (activation == "relu") {
      return enable_auxiliary ? CUBLASLT_EPILOGUE_RELU_AUX_BIAS
                              : CUBLASLT_EPILOGUE_RELU_BIAS;
    } else if (activation == "gelu") {
      return enable_auxiliary ? CUBLASLT_EPILOGUE_GELU_AUX_BIAS
                              : CUBLASLT_EPILOGUE_GELU_BIAS;
    } else if (activation == "none") {
      return CUBLASLT_EPILOGUE_BIAS;
    } else {
      PADDLE_ENFORCE_EQ(
235 236
          true,
          false,
237 238 239 240 241 242 243 244 245
          platform::errors::InvalidArgument(
              "The activation attribute of fused_gemm_epilogue op should be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation=%s.",
              activation));
    }
  }
};

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
enum FusedGEMMGradInType { kDX = 0, kDY = 1, kDZ = 2 };

template <bool TransX, bool TransY>
struct FusedGEMMGradTrait;

template <>
struct FusedGEMMGradTrait<false, false> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<true, false> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradATrans = false;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<false, true> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = false;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<true, true> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradATrans = true;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = true;
};

static constexpr auto BoolToCuBlasEnum(bool transpose) {
  return transpose ? CUBLAS_OP_T : CUBLAS_OP_N;
}

307 308 309 310
template <typename DeviceContext, typename T>
class FusedGemmEpilogueGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
311 312
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    if (transpose_x) {
      if (transpose_y) {
        ComputeImpl<true, true>(ctx);
      } else {
        ComputeImpl<true, false>(ctx);
      }
    } else {
      if (transpose_y) {
        ComputeImpl<false, true>(ctx);
      } else {
        ComputeImpl<false, false>(ctx);
      }
    }
  }

 private:
  template <bool TransX, bool TransY>
  static void ComputeImpl(const framework::ExecutionContext& ctx) {
    using Trait = FusedGEMMGradTrait<TransX, TransY>;
L
Leo Chen 已提交
333
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
334 335 336 337 338 339 340 341 342 343 344
    const Tensor* dout = ctx.Input<Tensor>("DOut");
    const Tensor* x = ctx.Input<Tensor>("X");
    const Tensor* y = ctx.Input<Tensor>("Y");
    const Tensor* reserve_space = ctx.Input<Tensor>("ReserveSpace");

    Tensor* dx = ctx.Output<Tensor>("DX");
    Tensor* dy = ctx.Output<Tensor>("DY");
    Tensor* dbias = ctx.Output<Tensor>("DBias");

    std::string activation_grad = ctx.Attr<std::string>("activation_grad");

345 346 347 348 349 350 351 352 353 354
    VLOG(10) << "trans_x = " << TransX << " , trans_y = " << TransY
             << " , activation_grad = " << activation_grad;

    auto x_mat_dims =
        phi::flatten_to_2d(x->dims(), TransX ? 1 : x->dims().size() - 1);

    // (M * K) * (K * N)
    int64_t M = TransX ? x_mat_dims[1] : x_mat_dims[0];
    int64_t K = TransY ? y->dims()[1] : y->dims()[0];
    int64_t N = TransY ? y->dims()[0] : y->dims()[1];
355

356
    VLOG(10) << "M = " << M << " , K = " << K << " , N = " << N;
357 358 359 360 361 362 363

    cudaDataType_t mat_type = CUDA_R_32F;
    cudaDataType_t scale_type = CUDA_R_32F;
    cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
    if (std::is_same<T, paddle::platform::float16>::value) {
      mat_type = CUDA_R_16F;
    }
364 365 366
    if (std::is_same<T, platform::bfloat16>::value) {
      mat_type = CUDA_R_16BF;
    }
367 368 369 370 371 372 373
    if (std::is_same<T, double>::value) {
      mat_type = CUDA_R_64F;
      scale_type = CUDA_R_64F;
      compute_type = CUBLAS_COMPUTE_64F;
    }

    cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
S
sneaxiy 已提交
374 375 376
    // NOTE(zengjinle): I do not know whether the 4MB workspace size is
    // "enough". I just followed the settings from the NVIDIA MLPerf BERT code.
    size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024;
377
    const cublasLtMatmulAlgo_t* algo = nullptr;
378 379 380 381 382 383 384 385 386 387 388 389 390
    cudaStream_t stream = dev_ctx.stream();

    double alpha64 = 1.0, beta64 = 0.0;
    float alpha32 = 1.0f, beta32 = 0.0f;
    void *alpha = nullptr, *beta = nullptr;
    if (std::is_same<T, double>::value) {
      alpha = &alpha64;
      beta = &beta64;
    } else {
      alpha = &alpha32;
      beta = &beta32;
    }

391 392 393 394 395 396 397 398
    cublasLtMatrixLayout_t dout_desc = nullptr, dout_trans_desc = nullptr;
    cublasLtMatrixLayout_t x_desc = nullptr, x_trans_desc = nullptr;
    cublasLtMatrixLayout_t y_desc = nullptr, y_trans_desc = nullptr;
    cublasLtMatrixLayout_t dx_desc = nullptr, dy_desc = nullptr;
    cublasLtMatmulDesc_t dx_operation_desc = nullptr,
                         dy_operation_desc = nullptr;

    DEFINE_PADDLE_SCOPE_GUARD([&] {
399 400 401 402 403 404 405 406
      auto descs = {dout_desc,
                    dout_trans_desc,
                    x_desc,
                    x_trans_desc,
                    y_desc,
                    y_trans_desc,
                    dx_desc,
                    dy_desc};
407 408 409 410 411 412
      for (auto desc : descs) {
        if (desc) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutDestroy(desc));
        }
      }
413

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
      if (dx_operation_desc) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescDestroy(dx_operation_desc));
      }

      if (dy_operation_desc) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescDestroy(dy_operation_desc));
      }
    });

    auto x_row = TransX ? K : M;
    auto x_col = TransX ? M : K;
    auto y_row = TransY ? N : K;
    auto y_col = TransY ? K : N;
    auto z_row = TransX ? N : M;
    auto z_col = TransX ? M : N;

    // dx = func(dout, y)
433
    if (dx) {
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
      constexpr auto kXGradAIsDZ = (Trait::kXGradA == FusedGEMMGradInType::kDZ);
      cublasLtMatrixLayout_t *dx_dout_desc, *dx_y_desc;

      if (TransX) {
        dx_dout_desc = &dout_trans_desc;
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatrixLayoutCreate(
                dx_dout_desc, mat_type, z_row, z_col, z_row));
      } else {
        dx_dout_desc = &dout_desc;
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatrixLayoutCreate(
                dx_dout_desc, mat_type, z_col, z_row, z_col));
      }

      dx_y_desc = &y_trans_desc;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          dx_y_desc, mat_type, y_col, y_row, y_col));

      auto& a_desc = kXGradAIsDZ ? (*dx_dout_desc) : (*dx_y_desc);
      auto& b_desc = kXGradAIsDZ ? (*dx_y_desc) : (*dx_dout_desc);
      auto a_trans = BoolToCuBlasEnum(Trait::kXGradATrans);
      auto b_trans = BoolToCuBlasEnum(Trait::kXGradBTrans);

      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &dx_desc, mat_type, x_col, x_row, x_col));

461 462 463 464
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
          &dx_operation_desc, compute_type, scale_type));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
465 466 467
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSB,
              &a_trans,
468
              sizeof(a_trans)));
469 470
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
471 472 473
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSA,
              &b_trans,
474 475
              sizeof(b_trans)));

476 477 478 479
      cublasLtEpilogue_t epiloque_func_for_dx =
          get_epilogue_type_(activation_grad);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
480 481 482 483
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE,
              &epiloque_func_for_dx,
              sizeof(epiloque_func_for_dx)));
484 485

      if (activation_grad != "none") {
486
        auto* aux_data = reserve_space->data();
487 488
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
489 490 491 492
                dx_operation_desc,
                CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
                &aux_data,
                sizeof(aux_data)));
493
        int64_t aux_ld = TransX ? M : K;
494 495
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
496 497 498 499
                dx_operation_desc,
                CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
                &aux_ld,
                sizeof(aux_ld)));
500 501
      }

L
Leo Chen 已提交
502 503 504 505
      auto dx_workspace = memory::Alloc(
          dev_ctx.GetPlace(),
          workspace_size,
          phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
506

507
      auto* dx_data = dev_ctx.Alloc<T>(dx, dx->numel() * sizeof(T));
508 509
      const auto* y_data = y->data<T>();
      const auto* dout_data = dout->data<T>();
510 511
      const auto* a_data = kXGradAIsDZ ? dout_data : y_data;
      const auto* b_data = kXGradAIsDZ ? y_data : dout_data;
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526
      auto algo =
          GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                        dx_operation_desc,
                                                        b_desc,
                                                        a_desc,
                                                        dx_desc,
                                                        alpha,
                                                        beta,
                                                        b_data,
                                                        a_data,
                                                        dx_data,
                                                        stream,
                                                        dx_workspace->ptr(),
                                                        workspace_size);
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmul(lt_handle,
                                            dx_operation_desc,
                                            alpha,
                                            b_data,
                                            b_desc,
                                            a_data,
                                            a_desc,
                                            beta,
                                            dx_data,
                                            dx_desc,
                                            dx_data,
                                            dx_desc,
                                            algo,
                                            dx_workspace->ptr(),
                                            workspace_size,
                                            stream));
545 546
    }

547
    // dy = func(dout, x)
548
    if (dy) {
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
      constexpr auto kYGradAIsDZ = (Trait::kYGradA == FusedGEMMGradInType::kDZ);

      cublasLtMatrixLayout_t *dy_dout_desc = nullptr, *dy_x_desc = nullptr;
      if (TransX) {
        dy_dout_desc = &dout_trans_desc;
        if (dout_trans_desc == nullptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutCreate(
                  dy_dout_desc, mat_type, z_row, z_col, z_row));
        }
      } else {
        dy_dout_desc = &dout_desc;
        if (dout_desc == nullptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutCreate(
                  dy_dout_desc, mat_type, z_col, z_row, z_col));
        }
      }

      dy_x_desc = &x_trans_desc;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          dy_x_desc, mat_type, x_col, x_row, x_col));

      auto& a_desc = kYGradAIsDZ ? (*dy_dout_desc) : (*dy_x_desc);
      auto& b_desc = kYGradAIsDZ ? (*dy_x_desc) : (*dy_dout_desc);
      auto a_trans = BoolToCuBlasEnum(Trait::kYGradATrans);
      auto b_trans = BoolToCuBlasEnum(Trait::kYGradBTrans);

      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &dy_desc, mat_type, y_col, y_row, y_col));

580 581
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
          &dy_operation_desc, compute_type, scale_type));
582

583 584
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
585 586 587
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSB,
              &a_trans,
588
              sizeof(a_trans)));
589 590
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
591 592 593
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSA,
              &b_trans,
594 595 596 597 598 599 600 601 602 603 604 605 606
              sizeof(b_trans)));

      cublasLtEpilogue_t epiloque_func_for_dy;
      if (dbias == nullptr) {
        epiloque_func_for_dy = CUBLASLT_EPILOGUE_DEFAULT;
      } else {
        if (TransY) {
          epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADB;
        } else {
          epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADA;
        }
      }

607 608
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
609 610 611 612
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE,
              &epiloque_func_for_dy,
              sizeof(epiloque_func_for_dy)));
613 614

      if (dbias) {
615
        auto* dbias_data = dev_ctx.Alloc<T>(dbias, dbias->numel() * sizeof(T));
616 617
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
618 619 620 621
                dy_operation_desc,
                CUBLASLT_MATMUL_DESC_BIAS_POINTER,
                &dbias_data,
                sizeof(dbias_data)));
622 623
      }

L
Leo Chen 已提交
624 625 626 627
      auto dy_workspace = memory::Alloc(
          dev_ctx.GetPlace(),
          workspace_size,
          phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
628
      auto* dy_data = dev_ctx.Alloc<T>(dy, dy->numel() * sizeof(T));
629 630
      const auto* dout_data = dout->data<T>();
      const auto* x_data = x->data<T>();
631 632
      const auto* a_data = kYGradAIsDZ ? dout_data : x_data;
      const auto* b_data = kYGradAIsDZ ? x_data : dout_data;
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647
      auto algo =
          GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                        dy_operation_desc,
                                                        b_desc,
                                                        a_desc,
                                                        dy_desc,
                                                        alpha,
                                                        beta,
                                                        b_data,
                                                        a_data,
                                                        dy_data,
                                                        stream,
                                                        dy_workspace->ptr(),
                                                        workspace_size);
648

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmul(lt_handle,
                                            dy_operation_desc,
                                            alpha,
                                            b_data,
                                            b_desc,
                                            a_data,
                                            a_desc,
                                            beta,
                                            dy_data,
                                            dy_desc,
                                            dy_data,
                                            dy_desc,
                                            algo,
                                            dy_workspace->ptr(),
                                            workspace_size,
                                            stream));
666 667 668 669 670 671 672 673 674 675 676 677 678 679
    }
  }

 private:
  static cublasLtEpilogue_t get_epilogue_type_(
      const std::string& activation_grad) {
    if (activation_grad == "relu_grad") {
      return CUBLASLT_EPILOGUE_DRELU;
    } else if (activation_grad == "gelu_grad") {
      return CUBLASLT_EPILOGUE_DGELU;
    } else if (activation_grad == "none") {
      return CUBLASLT_EPILOGUE_DEFAULT;
    } else {
      PADDLE_ENFORCE_EQ(
680 681
          true,
          false,
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
          platform::errors::InvalidArgument(
              "The activation_grad attribute of fused_gemm_epilogue op should "
              "be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation_grad=%s.",
              activation_grad));
    }
  }
};

}  // namespace operators
}  // namespace paddle

#if CUDA_VERSION >= 11060
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_gemm_epilogue,
L
Leo Chen 已提交
699 700
    ops::FusedGemmEpilogueKernel<phi::GPUContext, float>,
    ops::FusedGemmEpilogueKernel<phi::GPUContext, double>,
701 702
    ops::FusedGemmEpilogueKernel<phi::GPUContext, paddle::platform::float16>,
    ops::FusedGemmEpilogueKernel<phi::GPUContext, paddle::platform::bfloat16>);
703 704 705

REGISTER_OP_CUDA_KERNEL(
    fused_gemm_epilogue_grad,
L
Leo Chen 已提交
706 707 708
    ops::FusedGemmEpilogueGradKernel<phi::GPUContext, float>,
    ops::FusedGemmEpilogueGradKernel<phi::GPUContext, double>,
    ops::FusedGemmEpilogueGradKernel<phi::GPUContext,
709 710
                                     paddle::platform::float16>,
    ops::FusedGemmEpilogueKernel<phi::GPUContext, paddle::platform::bfloat16>);
711
#endif