fused_gemm_epilogue_op.cu 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

16
#include "paddle/fluid/operators/fused/fused_gemm_epilogue_op.h"
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
19
#include "paddle/fluid/framework/scope_guard.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "paddle/fluid/platform/dynload/cublasLt.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class FusedGemmEpilogueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

    const Tensor* x = ctx.Input<Tensor>("X");
    const Tensor* y = ctx.Input<Tensor>("Y");
    const Tensor* bias = ctx.Input<Tensor>("Bias");

    Tensor* out = ctx.Output<Tensor>("Out");
    Tensor* reserve_space = ctx.Output<Tensor>("ReserveSpace");

    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

    std::string activation = ctx.Attr<std::string>("activation");
45 46
    VLOG(10) << "trans_x = " << trans_x << " , trans_y = " << trans_y
             << " , activation = " << activation;
47 48 49 50 51 52 53
    bool enable_auxiliary = reserve_space == nullptr ? false : true;

    out->mutable_data<T>(ctx.GetPlace());
    auto* out_data = out->data<T>();

    auto x_mat_dims =
        phi::flatten_to_2d(x->dims(), trans_x ? 1 : x->dims().size() - 1);
54
    // (M * K) * (K * N)
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    int64_t M = trans_x ? x_mat_dims[1] : x_mat_dims[0];
    int64_t K = trans_y ? y->dims()[1] : y->dims()[0];
    int64_t N = trans_y ? y->dims()[0] : y->dims()[1];

    cudaDataType_t mat_type = CUDA_R_32F;
    cudaDataType_t scale_type = CUDA_R_32F;
    cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
    if (std::is_same<T, paddle::platform::float16>::value) {
      mat_type = CUDA_R_16F;
    }
    if (std::is_same<T, double>::value) {
      mat_type = CUDA_R_64F;
      scale_type = CUDA_R_64F;
      compute_type = CUBLAS_COMPUTE_64F;
    }

    cublasLtMatmulDesc_t operation_desc = NULL;
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
        &operation_desc, compute_type, scale_type));
    cublasOperation_t transx = trans_x ? CUBLAS_OP_T : CUBLAS_OP_N;
    cublasOperation_t transy = trans_y ? CUBLAS_OP_T : CUBLAS_OP_N;
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
78 79 80
            operation_desc,
            CUBLASLT_MATMUL_DESC_TRANSB,
            &transx,
81 82 83
            sizeof(transx)));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
84 85 86
            operation_desc,
            CUBLASLT_MATMUL_DESC_TRANSA,
            &transy,
87 88 89 90 91 92
            sizeof(transy)));

    cublasLtEpilogue_t epiloque_func =
        get_epilogue_type_(activation, enable_auxiliary);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
93 94 95
            operation_desc,
            CUBLASLT_MATMUL_DESC_EPILOGUE,
            &epiloque_func,
96 97 98 99
            sizeof(epiloque_func)));
    const T* bias_data = bias->data<T>();
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
100 101 102
            operation_desc,
            CUBLASLT_MATMUL_DESC_BIAS_POINTER,
            &bias_data,
103 104 105 106 107 108 109 110 111 112
            sizeof(bias_data)));

    if (enable_auxiliary && activation != "none") {
      size_t reserve_space_size = 0;
      if (activation == "relu") {
        // Count in bits.
        reserve_space_size = phi::product(out->dims()) / 8;
      } else {
        reserve_space_size = phi::product(out->dims()) * sizeof(T);
      }
113 114
      reserve_space->mutable_data(
          ctx.GetPlace(), out->type(), reserve_space_size);
115 116 117 118
      void* aux_data = reinterpret_cast<void*>(reserve_space->data<T>());

      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
119 120 121 122
              operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
              &aux_data,
              sizeof(aux_data)));
123
      int64_t aux_ld = N;
124 125
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
126 127 128
              operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
              &aux_ld,
129
              sizeof(aux_ld)));
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    }

    cublasLtMatrixLayout_t x_desc = NULL, y_desc = NULL, out_desc = NULL;
    if (trans_x)
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, M, K, M));
    else
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, K, M, K));
    if (trans_y)
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, K, N, K));
    else
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, N, K, N));
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
        &out_desc, mat_type, N, M, N));

    cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
149
    size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024 * 1024;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    cudaStream_t stream = dev_ctx.stream();
    memory::allocation::AllocationPtr workspace =
        memory::Alloc(dev_ctx, workspace_size);

    double alpha64 = 1.0, beta64 = 0.0;
    float alpha32 = 1.0f, beta32 = 0.0f;
    void *alpha = nullptr, *beta = nullptr;
    if (std::is_same<T, double>::value) {
      alpha = &alpha64;
      beta = &beta64;
    } else {
      alpha = &alpha32;
      beta = &beta32;
    }

165 166 167
    const auto* y_data = y->data<T>();
    const auto* x_data = x->data<T>();

168 169 170 171 172 173 174 175 176 177 178 179 180
    auto algo = GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                              operation_desc,
                                                              y_desc,
                                                              x_desc,
                                                              out_desc,
                                                              alpha,
                                                              beta,
                                                              y_data,
                                                              x_data,
                                                              out_data,
                                                              stream,
                                                              workspace->ptr(),
                                                              workspace_size);
181

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmul(lt_handle,
                                          operation_desc,
                                          alpha,
                                          y_data,
                                          y_desc,
                                          x_data,
                                          x_desc,
                                          beta,
                                          out_data,
                                          out_desc,
                                          out_data,
                                          out_desc,
                                          algo,
                                          workspace->ptr(),
                                          workspace_size,
                                          stream));
199 200 201 202 203 204 205 206 207

    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescDestroy(operation_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(y_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(x_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(out_desc));
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  }

 private:
  static cublasLtEpilogue_t get_epilogue_type_(const std::string& activation,
                                               bool enable_auxiliary) {
    if (activation == "relu") {
      return enable_auxiliary ? CUBLASLT_EPILOGUE_RELU_AUX_BIAS
                              : CUBLASLT_EPILOGUE_RELU_BIAS;
    } else if (activation == "gelu") {
      return enable_auxiliary ? CUBLASLT_EPILOGUE_GELU_AUX_BIAS
                              : CUBLASLT_EPILOGUE_GELU_BIAS;
    } else if (activation == "none") {
      return CUBLASLT_EPILOGUE_BIAS;
    } else {
      PADDLE_ENFORCE_EQ(
223 224
          true,
          false,
225 226 227 228 229 230 231 232 233
          platform::errors::InvalidArgument(
              "The activation attribute of fused_gemm_epilogue op should be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation=%s.",
              activation));
    }
  }
};

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
enum FusedGEMMGradInType { kDX = 0, kDY = 1, kDZ = 2 };

template <bool TransX, bool TransY>
struct FusedGEMMGradTrait;

template <>
struct FusedGEMMGradTrait<false, false> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<true, false> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradATrans = false;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<false, true> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = false;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<true, true> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradATrans = true;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = true;
};

static constexpr auto BoolToCuBlasEnum(bool transpose) {
  return transpose ? CUBLAS_OP_T : CUBLAS_OP_N;
}

295 296 297 298
template <typename DeviceContext, typename T>
class FusedGemmEpilogueGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
299 300
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    if (transpose_x) {
      if (transpose_y) {
        ComputeImpl<true, true>(ctx);
      } else {
        ComputeImpl<true, false>(ctx);
      }
    } else {
      if (transpose_y) {
        ComputeImpl<false, true>(ctx);
      } else {
        ComputeImpl<false, false>(ctx);
      }
    }
  }

 private:
  template <bool TransX, bool TransY>
  static void ComputeImpl(const framework::ExecutionContext& ctx) {
    using Trait = FusedGEMMGradTrait<TransX, TransY>;
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
322 323 324 325 326 327 328 329 330 331 332
    const Tensor* dout = ctx.Input<Tensor>("DOut");
    const Tensor* x = ctx.Input<Tensor>("X");
    const Tensor* y = ctx.Input<Tensor>("Y");
    const Tensor* reserve_space = ctx.Input<Tensor>("ReserveSpace");

    Tensor* dx = ctx.Output<Tensor>("DX");
    Tensor* dy = ctx.Output<Tensor>("DY");
    Tensor* dbias = ctx.Output<Tensor>("DBias");

    std::string activation_grad = ctx.Attr<std::string>("activation_grad");

333 334 335 336 337 338 339 340 341 342
    VLOG(10) << "trans_x = " << TransX << " , trans_y = " << TransY
             << " , activation_grad = " << activation_grad;

    auto x_mat_dims =
        phi::flatten_to_2d(x->dims(), TransX ? 1 : x->dims().size() - 1);

    // (M * K) * (K * N)
    int64_t M = TransX ? x_mat_dims[1] : x_mat_dims[0];
    int64_t K = TransY ? y->dims()[1] : y->dims()[0];
    int64_t N = TransY ? y->dims()[0] : y->dims()[1];
343

344
    VLOG(10) << "M = " << M << " , K = " << K << " , N = " << N;
345 346 347 348 349 350 351 352 353 354 355 356 357 358

    cudaDataType_t mat_type = CUDA_R_32F;
    cudaDataType_t scale_type = CUDA_R_32F;
    cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
    if (std::is_same<T, paddle::platform::float16>::value) {
      mat_type = CUDA_R_16F;
    }
    if (std::is_same<T, double>::value) {
      mat_type = CUDA_R_64F;
      scale_type = CUDA_R_64F;
      compute_type = CUBLAS_COMPUTE_64F;
    }

    cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
359 360
    size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024 * 1024;
    const cublasLtMatmulAlgo_t* algo = nullptr;
361 362 363 364 365 366 367 368 369 370 371 372 373
    cudaStream_t stream = dev_ctx.stream();

    double alpha64 = 1.0, beta64 = 0.0;
    float alpha32 = 1.0f, beta32 = 0.0f;
    void *alpha = nullptr, *beta = nullptr;
    if (std::is_same<T, double>::value) {
      alpha = &alpha64;
      beta = &beta64;
    } else {
      alpha = &alpha32;
      beta = &beta32;
    }

374 375 376 377 378 379 380 381
    cublasLtMatrixLayout_t dout_desc = nullptr, dout_trans_desc = nullptr;
    cublasLtMatrixLayout_t x_desc = nullptr, x_trans_desc = nullptr;
    cublasLtMatrixLayout_t y_desc = nullptr, y_trans_desc = nullptr;
    cublasLtMatrixLayout_t dx_desc = nullptr, dy_desc = nullptr;
    cublasLtMatmulDesc_t dx_operation_desc = nullptr,
                         dy_operation_desc = nullptr;

    DEFINE_PADDLE_SCOPE_GUARD([&] {
382 383 384 385 386 387 388 389
      auto descs = {dout_desc,
                    dout_trans_desc,
                    x_desc,
                    x_trans_desc,
                    y_desc,
                    y_trans_desc,
                    dx_desc,
                    dy_desc};
390 391 392 393 394 395
      for (auto desc : descs) {
        if (desc) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutDestroy(desc));
        }
      }
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
      if (dx_operation_desc) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescDestroy(dx_operation_desc));
      }

      if (dy_operation_desc) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescDestroy(dy_operation_desc));
      }
    });

    auto x_row = TransX ? K : M;
    auto x_col = TransX ? M : K;
    auto y_row = TransY ? N : K;
    auto y_col = TransY ? K : N;
    auto z_row = TransX ? N : M;
    auto z_col = TransX ? M : N;

    // dx = func(dout, y)
416
    if (dx) {
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
      constexpr auto kXGradAIsDZ = (Trait::kXGradA == FusedGEMMGradInType::kDZ);
      cublasLtMatrixLayout_t *dx_dout_desc, *dx_y_desc;

      if (TransX) {
        dx_dout_desc = &dout_trans_desc;
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatrixLayoutCreate(
                dx_dout_desc, mat_type, z_row, z_col, z_row));
      } else {
        dx_dout_desc = &dout_desc;
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatrixLayoutCreate(
                dx_dout_desc, mat_type, z_col, z_row, z_col));
      }

      dx_y_desc = &y_trans_desc;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          dx_y_desc, mat_type, y_col, y_row, y_col));

      auto& a_desc = kXGradAIsDZ ? (*dx_dout_desc) : (*dx_y_desc);
      auto& b_desc = kXGradAIsDZ ? (*dx_y_desc) : (*dx_dout_desc);
      auto a_trans = BoolToCuBlasEnum(Trait::kXGradATrans);
      auto b_trans = BoolToCuBlasEnum(Trait::kXGradBTrans);

      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &dx_desc, mat_type, x_col, x_row, x_col));

444 445 446 447
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
          &dx_operation_desc, compute_type, scale_type));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
448 449 450
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSB,
              &a_trans,
451
              sizeof(a_trans)));
452 453
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
454 455 456
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSA,
              &b_trans,
457 458
              sizeof(b_trans)));

459 460 461 462
      cublasLtEpilogue_t epiloque_func_for_dx =
          get_epilogue_type_(activation_grad);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
463 464 465 466
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE,
              &epiloque_func_for_dx,
              sizeof(epiloque_func_for_dx)));
467 468 469 470 471

      if (activation_grad != "none") {
        auto* aux_data = reserve_space->data<T>();
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
472 473 474 475
                dx_operation_desc,
                CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
                &aux_data,
                sizeof(aux_data)));
476
        int64_t aux_ld = TransX ? M : K;
477 478
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
479 480 481 482
                dx_operation_desc,
                CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
                &aux_ld,
                sizeof(aux_ld)));
483 484
      }

485
      auto dx_workspace = memory::Alloc(dev_ctx, workspace_size);
486

487
      auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
488 489
      const auto* y_data = y->data<T>();
      const auto* dout_data = dout->data<T>();
490 491
      const auto* a_data = kXGradAIsDZ ? dout_data : y_data;
      const auto* b_data = kXGradAIsDZ ? y_data : dout_data;
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506
      auto algo =
          GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                        dx_operation_desc,
                                                        b_desc,
                                                        a_desc,
                                                        dx_desc,
                                                        alpha,
                                                        beta,
                                                        b_data,
                                                        a_data,
                                                        dx_data,
                                                        stream,
                                                        dx_workspace->ptr(),
                                                        workspace_size);
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmul(lt_handle,
                                            dx_operation_desc,
                                            alpha,
                                            b_data,
                                            b_desc,
                                            a_data,
                                            a_desc,
                                            beta,
                                            dx_data,
                                            dx_desc,
                                            dx_data,
                                            dx_desc,
                                            algo,
                                            dx_workspace->ptr(),
                                            workspace_size,
                                            stream));
525 526
    }

527
    // dy = func(dout, x)
528
    if (dy) {
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
      constexpr auto kYGradAIsDZ = (Trait::kYGradA == FusedGEMMGradInType::kDZ);

      cublasLtMatrixLayout_t *dy_dout_desc = nullptr, *dy_x_desc = nullptr;
      if (TransX) {
        dy_dout_desc = &dout_trans_desc;
        if (dout_trans_desc == nullptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutCreate(
                  dy_dout_desc, mat_type, z_row, z_col, z_row));
        }
      } else {
        dy_dout_desc = &dout_desc;
        if (dout_desc == nullptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutCreate(
                  dy_dout_desc, mat_type, z_col, z_row, z_col));
        }
      }

      dy_x_desc = &x_trans_desc;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          dy_x_desc, mat_type, x_col, x_row, x_col));

      auto& a_desc = kYGradAIsDZ ? (*dy_dout_desc) : (*dy_x_desc);
      auto& b_desc = kYGradAIsDZ ? (*dy_x_desc) : (*dy_dout_desc);
      auto a_trans = BoolToCuBlasEnum(Trait::kYGradATrans);
      auto b_trans = BoolToCuBlasEnum(Trait::kYGradBTrans);

      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &dy_desc, mat_type, y_col, y_row, y_col));

560 561
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
          &dy_operation_desc, compute_type, scale_type));
562

563 564
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
565 566 567
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSB,
              &a_trans,
568
              sizeof(a_trans)));
569 570
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
571 572 573
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSA,
              &b_trans,
574 575 576 577 578 579 580 581 582 583 584 585 586
              sizeof(b_trans)));

      cublasLtEpilogue_t epiloque_func_for_dy;
      if (dbias == nullptr) {
        epiloque_func_for_dy = CUBLASLT_EPILOGUE_DEFAULT;
      } else {
        if (TransY) {
          epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADB;
        } else {
          epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADA;
        }
      }

587 588
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
589 590 591 592
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE,
              &epiloque_func_for_dy,
              sizeof(epiloque_func_for_dy)));
593 594

      if (dbias) {
595
        auto* dbias_data = dbias->mutable_data<T>(ctx.GetPlace());
596 597
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
598 599 600 601
                dy_operation_desc,
                CUBLASLT_MATMUL_DESC_BIAS_POINTER,
                &dbias_data,
                sizeof(dbias_data)));
602 603
      }

604 605
      auto dy_workspace = memory::Alloc(dev_ctx, workspace_size);
      auto* dy_data = dy->mutable_data<T>(ctx.GetPlace());
606 607
      const auto* dout_data = dout->data<T>();
      const auto* x_data = x->data<T>();
608 609
      const auto* a_data = kYGradAIsDZ ? dout_data : x_data;
      const auto* b_data = kYGradAIsDZ ? x_data : dout_data;
610

611 612 613 614 615 616 617 618 619 620 621 622 623 624
      auto algo =
          GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                        dy_operation_desc,
                                                        b_desc,
                                                        a_desc,
                                                        dy_desc,
                                                        alpha,
                                                        beta,
                                                        b_data,
                                                        a_data,
                                                        dy_data,
                                                        stream,
                                                        dy_workspace->ptr(),
                                                        workspace_size);
625

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmul(lt_handle,
                                            dy_operation_desc,
                                            alpha,
                                            b_data,
                                            b_desc,
                                            a_data,
                                            a_desc,
                                            beta,
                                            dy_data,
                                            dy_desc,
                                            dy_data,
                                            dy_desc,
                                            algo,
                                            dy_workspace->ptr(),
                                            workspace_size,
                                            stream));
643 644 645 646 647 648 649 650 651 652 653 654 655 656
    }
  }

 private:
  static cublasLtEpilogue_t get_epilogue_type_(
      const std::string& activation_grad) {
    if (activation_grad == "relu_grad") {
      return CUBLASLT_EPILOGUE_DRELU;
    } else if (activation_grad == "gelu_grad") {
      return CUBLASLT_EPILOGUE_DGELU;
    } else if (activation_grad == "none") {
      return CUBLASLT_EPILOGUE_DEFAULT;
    } else {
      PADDLE_ENFORCE_EQ(
657 658
          true,
          false,
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
          platform::errors::InvalidArgument(
              "The activation_grad attribute of fused_gemm_epilogue op should "
              "be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation_grad=%s.",
              activation_grad));
    }
  }
};

}  // namespace operators
}  // namespace paddle

#if CUDA_VERSION >= 11060
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_gemm_epilogue,
    ops::FusedGemmEpilogueKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedGemmEpilogueKernel<paddle::platform::CUDADeviceContext, double>,
    ops::FusedGemmEpilogueKernel<paddle::platform::CUDADeviceContext,
                                 paddle::platform::float16>);

REGISTER_OP_CUDA_KERNEL(
    fused_gemm_epilogue_grad,
    ops::FusedGemmEpilogueGradKernel<paddle::platform::CUDADeviceContext,
                                     float>,
    ops::FusedGemmEpilogueGradKernel<paddle::platform::CUDADeviceContext,
                                     double>,
    ops::FusedGemmEpilogueGradKernel<paddle::platform::CUDADeviceContext,
                                     paddle::platform::float16>);
#endif