gpu_primitives.h 19.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#ifdef PADDLE_WITH_CUDA
17
#include <cuda.h>
18 19 20 21
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#endif
22
#include <stdio.h>
23

24
#include "paddle/fluid/platform/bfloat16.h"
25
#include "paddle/fluid/platform/complex.h"
26
#include "paddle/fluid/platform/float16.h"
27 28 29 30 31

namespace paddle {
namespace platform {

#define CUDA_ATOMIC_WRAPPER(op, T) \
32
  __device__ __forceinline__ T CudaAtomic##op(T *address, const T val)
33 34 35 36

#define USE_CUDA_ATOMIC(op, T) \
  CUDA_ATOMIC_WRAPPER(op, T) { return atomic##op(address, val); }

37 38 39 40 41
// Default thread count per block(or block size).
// TODO(typhoonzero): need to benchmark against setting this value
//                    to 1024.
constexpr int PADDLE_CUDA_NUM_THREADS = 512;

42 43
// For atomicAdd.
USE_CUDA_ATOMIC(Add, float);
Y
Yu Yang 已提交
44 45
USE_CUDA_ATOMIC(Add, int);
USE_CUDA_ATOMIC(Add, unsigned int);
Y
Yu Yang 已提交
46 47 48
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
USE_CUDA_ATOMIC(Add, unsigned long long int);  // NOLINT
Y
Yu Yang 已提交
49 50

CUDA_ATOMIC_WRAPPER(Add, int64_t) {
Y
Yu Yang 已提交
51 52
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
Y
Yu Yang 已提交
53
                "long long should be int64");
Y
Yu Yang 已提交
54
  return CudaAtomicAdd(
55 56
      reinterpret_cast<unsigned long long int *>(address),  // NOLINT
      static_cast<unsigned long long int>(val));            // NOLINT
Y
Yu Yang 已提交
57
}
58

59
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 600)
60 61 62
USE_CUDA_ATOMIC(Add, double);
#else
CUDA_ATOMIC_WRAPPER(Add, double) {
63 64 65
  unsigned long long int *address_as_ull =                  // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT
66 67 68

  do {
    assumed = old;
69 70
    old = atomicCAS(address_as_ull,
                    assumed,
71 72 73 74 75 76 77
                    __double_as_longlong(val + __longlong_as_double(assumed)));

    // Note: uses integer comparison to avoid hang in case of NaN
  } while (assumed != old);

  return __longlong_as_double(old);
}
78 79 80 81 82 83 84 85 86 87 88 89 90
#endif

#ifdef PADDLE_CUDA_FP16
// NOTE(dzhwinter): cuda do not have atomicCAS for half.
// Just use the half address as a unsigned value address and
// do the atomicCAS. According to the value store at high 16 bits
// or low 16 bits, then do a different sum and CAS.
// Given most warp-threads will failed on the atomicCAS, so this
// implemented should be avoided in high concurrency. It's will be
// slower than the way convert value into 32bits and do a full atomicCAS.

// convert the value into float and do the add arithmetic.
// then store the result into a uint32.
D
dzhwinter 已提交
91
inline static __device__ uint32_t add_to_low_half(uint32_t val, float x) {
92 93
  float16 low_half;
  // the float16 in lower 16bits
D
dzhwinter 已提交
94
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
95
  low_half = static_cast<float16>(static_cast<float>(low_half) + x);
D
dzhwinter 已提交
96
  return (val & 0xFFFF0000u) | low_half.x;
97 98
}

D
dzhwinter 已提交
99
inline static __device__ uint32_t add_to_high_half(uint32_t val, float x) {
100 101 102 103
  float16 high_half;
  // the float16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<float16>(static_cast<float>(high_half) + x);
D
dzhwinter 已提交
104
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
105 106
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120
#if CUDA_VERSION >= 10000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
static __device__ __forceinline__ float16 CUDAFP16ToPDFP16(__half x) {
  return *reinterpret_cast<float16 *>(&x);
}

static __device__ __forceinline__ __half PDFP16ToCUDAFP16(float16 x) {
  return *reinterpret_cast<__half *>(&x);
}

CUDA_ATOMIC_WRAPPER(Add, float16) {
  return CUDAFP16ToPDFP16(
      atomicAdd(reinterpret_cast<__half *>(address), PDFP16ToCUDAFP16(val)));
}
#else
121 122 123
CUDA_ATOMIC_WRAPPER(Add, float16) {
  // concrete packed float16 value may exsits in lower or higher 16bits
  // of the 32bits address.
D
dzhwinter 已提交
124 125 126
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
127 128 129 130 131
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t sum;
  uint32_t newval;
  uint32_t assumed;
D
dzhwinter 已提交
132
  if (((uintptr_t)address & 0x02) == 0) {
133 134 135 136 137 138
    // the float16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, add_to_low_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
D
dzhwinter 已提交
139
    ret.x = old & 0xFFFFu;
140 141 142 143 144 145 146 147 148 149 150 151
    return ret;
  } else {
    // the float16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, add_to_high_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
D
dangqingqing 已提交
152
#endif
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
template <typename T, bool IsAvailable, typename NVType, typename NVVec2Type>
struct VecAtomicAddHelperBase {
  static constexpr auto kIsAvailable = IsAvailable;
  using NVT = NVType;
  using NVVec2T = NVVec2Type;
};

template <typename T>
struct VecAtomicAddHelper : VecAtomicAddHelperBase<T, false, void, void> {};

#if CUDA_VERSION >= 10000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
template <>
struct VecAtomicAddHelper<platform::float16>
    : VecAtomicAddHelperBase<platform::float16, true, __half, __half2> {};
#endif

#if CUDA_VERSION >= 11000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
template <>
struct VecAtomicAddHelper<platform::bfloat16>
    : VecAtomicAddHelperBase<platform::bfloat16,
                             true,
                             __nv_bfloat16,
                             __nv_bfloat162> {};
#endif

179 180
// The performance of "atomicAdd(half* )" is bad, but for "atomicAdd(half2* )"
// is good. So for fp16 type, we can use "atomicAdd(half2* )" to speed up.
181
template <typename T,
182 183
          typename std::enable_if<VecAtomicAddHelper<T>::kIsAvailable>::type * =
              nullptr>
184 185 186 187
__device__ __forceinline__ void fastAtomicAdd(T *tensor,
                                              size_t index,
                                              const size_t numel,
                                              T value) {
188
  // whether the address is 32-byte aligned.
189 190 191
  using NVT = typename VecAtomicAddHelper<T>::NVT;
  using NVVec2T = typename VecAtomicAddHelper<T>::NVVec2T;
  NVT *target_addr = reinterpret_cast<NVT *>(tensor + index);
192
  bool aligned_half2 =
193
      (reinterpret_cast<std::uintptr_t>(target_addr) % sizeof(NVVec2T) == 0);
194 195

  if (aligned_half2 && index < (numel - 1)) {
196 197 198 199
    NVVec2T value2;
    value2.x = *reinterpret_cast<NVT *>(&value);
    value2.y = 0.0;
    atomicAdd(reinterpret_cast<NVVec2T *>(target_addr), value2);
200 201

  } else if (!aligned_half2 && index > 0) {
202 203 204 205
    NVVec2T value2;
    value2.x = 0.0;
    value2.y = *reinterpret_cast<NVT *>(&value);
    atomicAdd(reinterpret_cast<NVVec2T *>(target_addr - 1), value2);
206 207

  } else {
208 209
    atomicAdd(reinterpret_cast<NVT *>(tensor) + index,
              *reinterpret_cast<NVT *>(&value));
210 211 212
  }
}

213
template <typename T,
214 215
          typename std::enable_if<!VecAtomicAddHelper<T>::kIsAvailable>::type
              * = nullptr>
216 217 218 219
__device__ __forceinline__ void fastAtomicAdd(T *arr,
                                              size_t index,
                                              const size_t numel,
                                              T value) {
220 221
  CudaAtomicAdd(arr + index, value);
}
222
#endif
223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
// NOTE(zhangbo): cuda do not have atomicCAS for __nv_bfloat16.
inline static __device__ uint32_t bf16_add_to_low_half(uint32_t val, float x) {
  bfloat16 low_half;
  // the bfloat16 in lower 16bits
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
  low_half = static_cast<bfloat16>(static_cast<float>(low_half) + x);
  return (val & 0xFFFF0000u) | low_half.x;
}

inline static __device__ uint32_t bf16_add_to_high_half(uint32_t val, float x) {
  bfloat16 high_half;
  // the bfloat16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<bfloat16>(static_cast<float>(high_half) + x);
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
}

#if CUDA_VERSION >= 11000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
static __device__ __forceinline__ bfloat16 CUDABF16ToPDBF16(__nv_bfloat16 x) {
  return *reinterpret_cast<bfloat16 *>(&x);
}

static __device__ __forceinline__ __nv_bfloat16 PDBF16ToCUDABF16(bfloat16 x) {
  return *reinterpret_cast<__nv_bfloat16 *>(&x);
}

CUDA_ATOMIC_WRAPPER(Add, bfloat16) {
  return CUDABF16ToPDBF16(atomicAdd(reinterpret_cast<__nv_bfloat16 *>(address),
                                    PDBF16ToCUDABF16(val)));
}
#else
CUDA_ATOMIC_WRAPPER(Add, bfloat16) {
  // concrete packed bfloat16 value may exsits in lower or higher 16bits
  // of the 32bits address.
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t sum;
  uint32_t newval;
  uint32_t assumed;
  if (((uintptr_t)address & 0x02) == 0) {
    // the bfloat16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
270 271
      old = atomicCAS(
          address_as_ui, assumed, bf16_add_to_low_half(assumed, val_f));
272 273 274 275 276 277 278 279
    } while (old != assumed);
    bfloat16 ret;
    ret.x = old & 0xFFFFu;
    return ret;
  } else {
    // the bfloat16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
280 281
      old = atomicCAS(
          address_as_ui, assumed, bf16_add_to_high_half(assumed, val_f));
282 283 284 285 286 287 288 289
    } while (old != assumed);
    bfloat16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
#endif

290
CUDA_ATOMIC_WRAPPER(Add, complex<float>) {
291 292
  float *real = reinterpret_cast<float *>(address);
  float *imag = real + 1;
293 294
  return complex<float>(CudaAtomicAdd(real, val.real),
                        CudaAtomicAdd(imag, val.imag));
295 296
}

297
CUDA_ATOMIC_WRAPPER(Add, complex<double>) {
298 299
  double *real = reinterpret_cast<double *>(address);
  double *imag = real + 1;
300 301
  return complex<double>(CudaAtomicAdd(real, val.real),
                         CudaAtomicAdd(imag, val.imag));
302 303
}

304 305 306 307 308
// For atomicMax
USE_CUDA_ATOMIC(Max, int);
USE_CUDA_ATOMIC(Max, unsigned int);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
309
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350)
310
USE_CUDA_ATOMIC(Max, unsigned long long int);  // NOLINT
311
#else
312
CUDA_ATOMIC_WRAPPER(Max, unsigned long long int) {  // NOLINT
313
  if (*address >= val) {
314
    return *address;
315 316
  }

317
  unsigned long long int old = *address, assumed;  // NOLINT
318 319 320 321 322 323 324 325 326 327 328

  do {
    assumed = old;
    if (assumed >= val) {
      break;
    }

    old = atomicCAS(address, assumed, val);
  } while (assumed != old);
}
#endif
329 330 331 332 333

CUDA_ATOMIC_WRAPPER(Max, int64_t) {
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
                "long long should be int64");
334 335 336 337 338 339 340 341 342 343 344
  long long int res = *address;  // NOLINT
  while (val > res) {
    long long int old = res;                                           // NOLINT
    res = (long long int)atomicCAS((unsigned long long int *)address,  // NOLINT
                                   (unsigned long long int)old,        // NOLINT
                                   (unsigned long long int)val);       // NOLINT
    if (res == old) {
      break;
    }
  }
  return res;
345 346 347 348
}

CUDA_ATOMIC_WRAPPER(Max, float) {
  if (*address >= val) {
349
    return *address;
350 351
  }

352
  int *const address_as_i = reinterpret_cast<int *>(address);
353 354 355 356 357 358 359 360 361 362
  int old = *address_as_i, assumed;

  do {
    assumed = old;
    if (__int_as_float(assumed) >= val) {
      break;
    }

    old = atomicCAS(address_as_i, assumed, __float_as_int(val));
  } while (assumed != old);
363 364

  return __int_as_float(old);
365 366 367 368
}

CUDA_ATOMIC_WRAPPER(Max, double) {
  if (*address >= val) {
369
    return *address;
370 371
  }

372 373 374
  unsigned long long int *const address_as_ull =            // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT
375 376 377 378 379 380 381 382 383

  do {
    assumed = old;
    if (__longlong_as_double(assumed) >= val) {
      break;
    }

    old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val));
  } while (assumed != old);
384 385

  return __longlong_as_double(old);
386 387
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
#ifdef PADDLE_CUDA_FP16
inline static __device__ uint32_t max_to_low_half(uint32_t val, float x) {
  float16 low_half;
  // The float16 in lower 16bits
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
  low_half = static_cast<float16>(max(static_cast<float>(low_half), x));
  return (val & 0xFFFF0000u) | low_half.x;
}

inline static __device__ uint32_t max_to_high_half(uint32_t val, float x) {
  float16 high_half;
  // The float16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<float16>(max(static_cast<float>(high_half), x));
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
}

CUDA_ATOMIC_WRAPPER(Max, float16) {
  if (*address >= val) {
    return *address;
  }
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t assumed;
  if (((uintptr_t)address & 0x02) == 0) {
    // The float16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, max_to_low_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old & 0xFFFFu;
    return ret;
  } else {
    // The float16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, max_to_high_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
#endif

437 438 439 440 441
// For atomicMin
USE_CUDA_ATOMIC(Min, int);
USE_CUDA_ATOMIC(Min, unsigned int);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
442
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350)
443
USE_CUDA_ATOMIC(Min, unsigned long long int);  // NOLINT
444
#else
445
CUDA_ATOMIC_WRAPPER(Min, unsigned long long int) {  // NOLINT
446
  if (*address <= val) {
447
    return *address;
448 449
  }

450
  unsigned long long int old = *address, assumed;  // NOLINT
451 452 453 454 455 456 457 458 459 460 461

  do {
    assumed = old;
    if (assumed <= val) {
      break;
    }

    old = atomicCAS(address, assumed, val);
  } while (assumed != old);
}
#endif
462 463 464 465 466

CUDA_ATOMIC_WRAPPER(Min, int64_t) {
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
                "long long should be int64");
467 468 469 470 471 472 473 474 475 476 477
  long long int res = *address;  // NOLINT
  while (val < res) {
    long long int old = res;                                           // NOLINT
    res = (long long int)atomicCAS((unsigned long long int *)address,  // NOLINT
                                   (unsigned long long int)old,        // NOLINT
                                   (unsigned long long int)val);       // NOLINT
    if (res == old) {
      break;
    }
  }
  return res;
478 479 480 481
}

CUDA_ATOMIC_WRAPPER(Min, float) {
  if (*address <= val) {
482
    return *address;
483 484
  }

485
  int *const address_as_i = reinterpret_cast<int *>(address);
486 487 488 489 490 491 492 493 494 495
  int old = *address_as_i, assumed;

  do {
    assumed = old;
    if (__int_as_float(assumed) <= val) {
      break;
    }

    old = atomicCAS(address_as_i, assumed, __float_as_int(val));
  } while (assumed != old);
496 497

  return __int_as_float(old);
498 499 500 501
}

CUDA_ATOMIC_WRAPPER(Min, double) {
  if (*address <= val) {
502
    return *address;
503 504
  }

505 506 507
  unsigned long long int *const address_as_ull =            // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT
508 509 510 511 512 513 514 515 516

  do {
    assumed = old;
    if (__longlong_as_double(assumed) <= val) {
      break;
    }

    old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val));
  } while (assumed != old);
517 518

  return __longlong_as_double(old);
519 520
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
#ifdef PADDLE_CUDA_FP16
inline static __device__ uint32_t min_to_low_half(uint32_t val, float x) {
  float16 low_half;
  // The float16 in lower 16bits
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
  low_half = static_cast<float16>(min(static_cast<float>(low_half), x));
  return (val & 0xFFFF0000u) | low_half.x;
}

inline static __device__ uint32_t min_to_high_half(uint32_t val, float x) {
  float16 high_half;
  // The float16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<float16>(min(static_cast<float>(high_half), x));
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
}

CUDA_ATOMIC_WRAPPER(Min, float16) {
  if (*address <= val) {
    return *address;
  }
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t assumed;
  if (((uintptr_t)address & 0x02) == 0) {
    // The float16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, min_to_low_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old & 0xFFFFu;
    return ret;
  } else {
    // The float16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, min_to_high_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
#endif

570 571 572 573 574 575
#ifdef PADDLE_WITH_CUDA
/*
 * One thead block deals with elementwise atomicAdd for vector of len.
 * @in: [x1, x2, x3, ...]
 * @out:[y1+x1, y2+x2, y3+x3, ...]
 * */
576

577
template <typename T,
578 579
          typename std::enable_if<!VecAtomicAddHelper<T>::kIsAvailable>::type
              * = nullptr>
580 581 582 583 584 585 586 587 588
__device__ __forceinline__ void VectorizedAtomicAddPerBlock(
    const int64_t len, int tid, int threads_per_block, const T *in, T *out) {
  for (int i = tid; i < len; i += threads_per_block) {
    CudaAtomicAdd(&out[i], in[i]);
  }
}

// Note: assume that len is even. If len is odd, call fastAtomicAdd directly.
template <typename T,
589 590
          typename std::enable_if<VecAtomicAddHelper<T>::kIsAvailable>::type * =
              nullptr>
591 592 593 594 595
__device__ __forceinline__ void VectorizedAtomicAddPerBlock(
    const int64_t len, int tid, int threads_per_block, const T *in, T *out) {
  int i = 0;
  int loops = len / 2 * 2;

596 597
  using NVT = typename VecAtomicAddHelper<T>::NVT;
  using NVVec2T = typename VecAtomicAddHelper<T>::NVVec2T;
598
  bool aligned_half2 =
599
      (reinterpret_cast<std::uintptr_t>(out) % sizeof(NVT) == 0);
600 601 602

  if (aligned_half2) {
    for (i = tid * 2; i < loops; i += threads_per_block * 2) {
603
      NVVec2T value2;
604 605
      T value_1 = in[i];
      T value_2 = in[i + 1];
606 607 608
      value2.x = *reinterpret_cast<NVT *>(&value_1);
      value2.y = *reinterpret_cast<NVT *>(&value_2);
      atomicAdd(reinterpret_cast<NVVec2T *>(&out[i]), value2);
609 610 611 612 613 614 615 616 617 618
    }
    for (; i < len; i += threads_per_block) {
      fastAtomicAdd(out, i, len, in[i]);
    }
  } else {
    for (int i = tid; i < len; i += threads_per_block) {
      fastAtomicAdd(out, i, len, in[i]);
    }
  }
}
619

620
#endif
621 622
}  // namespace platform
}  // namespace paddle