gpu_primitives.h 13.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#ifdef PADDLE_WITH_CUDA
17
#include <cuda.h>
18 19 20 21
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#endif
22
#include <stdio.h>
23
#include "paddle/fluid/platform/complex.h"
24
#include "paddle/fluid/platform/float16.h"
25 26 27 28 29

namespace paddle {
namespace platform {

#define CUDA_ATOMIC_WRAPPER(op, T) \
30
  __device__ __forceinline__ T CudaAtomic##op(T *address, const T val)
31 32 33 34

#define USE_CUDA_ATOMIC(op, T) \
  CUDA_ATOMIC_WRAPPER(op, T) { return atomic##op(address, val); }

35 36 37 38 39
// Default thread count per block(or block size).
// TODO(typhoonzero): need to benchmark against setting this value
//                    to 1024.
constexpr int PADDLE_CUDA_NUM_THREADS = 512;

40 41
// For atomicAdd.
USE_CUDA_ATOMIC(Add, float);
Y
Yu Yang 已提交
42 43
USE_CUDA_ATOMIC(Add, int);
USE_CUDA_ATOMIC(Add, unsigned int);
Y
Yu Yang 已提交
44 45 46
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
USE_CUDA_ATOMIC(Add, unsigned long long int);  // NOLINT
Y
Yu Yang 已提交
47 48

CUDA_ATOMIC_WRAPPER(Add, int64_t) {
Y
Yu Yang 已提交
49 50
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
Y
Yu Yang 已提交
51
                "long long should be int64");
Y
Yu Yang 已提交
52
  return CudaAtomicAdd(
53 54
      reinterpret_cast<unsigned long long int *>(address),  // NOLINT
      static_cast<unsigned long long int>(val));            // NOLINT
Y
Yu Yang 已提交
55
}
56

57
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 600)
58 59 60
USE_CUDA_ATOMIC(Add, double);
#else
CUDA_ATOMIC_WRAPPER(Add, double) {
61 62 63
  unsigned long long int *address_as_ull =                  // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT
64 65 66 67 68 69 70 71 72 73 74

  do {
    assumed = old;
    old = atomicCAS(address_as_ull, assumed,
                    __double_as_longlong(val + __longlong_as_double(assumed)));

    // Note: uses integer comparison to avoid hang in case of NaN
  } while (assumed != old);

  return __longlong_as_double(old);
}
75 76 77 78 79 80 81 82 83 84 85 86 87
#endif

#ifdef PADDLE_CUDA_FP16
// NOTE(dzhwinter): cuda do not have atomicCAS for half.
// Just use the half address as a unsigned value address and
// do the atomicCAS. According to the value store at high 16 bits
// or low 16 bits, then do a different sum and CAS.
// Given most warp-threads will failed on the atomicCAS, so this
// implemented should be avoided in high concurrency. It's will be
// slower than the way convert value into 32bits and do a full atomicCAS.

// convert the value into float and do the add arithmetic.
// then store the result into a uint32.
D
dzhwinter 已提交
88
inline static __device__ uint32_t add_to_low_half(uint32_t val, float x) {
89 90
  float16 low_half;
  // the float16 in lower 16bits
D
dzhwinter 已提交
91
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
92
  low_half = static_cast<float16>(static_cast<float>(low_half) + x);
D
dzhwinter 已提交
93
  return (val & 0xFFFF0000u) | low_half.x;
94 95
}

D
dzhwinter 已提交
96
inline static __device__ uint32_t add_to_high_half(uint32_t val, float x) {
97 98 99 100
  float16 high_half;
  // the float16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<float16>(static_cast<float>(high_half) + x);
D
dzhwinter 已提交
101
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
102 103
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117
#if CUDA_VERSION >= 10000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
static __device__ __forceinline__ float16 CUDAFP16ToPDFP16(__half x) {
  return *reinterpret_cast<float16 *>(&x);
}

static __device__ __forceinline__ __half PDFP16ToCUDAFP16(float16 x) {
  return *reinterpret_cast<__half *>(&x);
}

CUDA_ATOMIC_WRAPPER(Add, float16) {
  return CUDAFP16ToPDFP16(
      atomicAdd(reinterpret_cast<__half *>(address), PDFP16ToCUDAFP16(val)));
}
#else
118 119 120
CUDA_ATOMIC_WRAPPER(Add, float16) {
  // concrete packed float16 value may exsits in lower or higher 16bits
  // of the 32bits address.
D
dzhwinter 已提交
121 122 123
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
124 125 126 127 128
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t sum;
  uint32_t newval;
  uint32_t assumed;
D
dzhwinter 已提交
129
  if (((uintptr_t)address & 0x02) == 0) {
130 131 132 133 134 135
    // the float16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, add_to_low_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
D
dzhwinter 已提交
136
    ret.x = old & 0xFFFFu;
137 138 139 140 141 142 143 144 145 146 147 148
    return ret;
  } else {
    // the float16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, add_to_high_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
D
dangqingqing 已提交
149
#endif
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

// The performance of "atomicAdd(half* )" is bad, but for "atomicAdd(half2* )"
// is good. So for fp16 type, we can use "atomicAdd(half2* )" to speed up.
template <typename T, typename std::enable_if<std::is_same<
                          platform::float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void fastAtomicAdd(T *tensor, size_t index,
                                              const size_t numel, T value) {
#if ((CUDA_VERSION < 10000) || \
     (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)))
  CudaAtomicAdd(reinterpret_cast<platform::float16 *>(tensor) + index,
                static_cast<platform::float16>(value));
#else
  // whether the address is 32-byte aligned.
  __half *target_addr = reinterpret_cast<__half *>(tensor + index);
  bool aligned_half2 =
      (reinterpret_cast<std::uintptr_t>(target_addr) % sizeof(__half2) == 0);

  if (aligned_half2 && index < (numel - 1)) {
    __half2 value2;
    value2.x = *reinterpret_cast<__half *>(&value);
    value2.y = __int2half_rz(0);
    atomicAdd(reinterpret_cast<__half2 *>(target_addr), value2);

  } else if (!aligned_half2 && index > 0) {
    __half2 value2;
    value2.x = __int2half_rz(0);
    value2.y = *reinterpret_cast<__half *>(&value);
    atomicAdd(reinterpret_cast<__half2 *>(target_addr - 1), value2);

  } else {
    atomicAdd(reinterpret_cast<__half *>(tensor) + index,
              *reinterpret_cast<__half *>(&value));
  }
#endif
}

template <typename T, typename std::enable_if<!std::is_same<
                          platform::float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void fastAtomicAdd(T *arr, size_t index,
                                              const size_t numel, T value) {
  CudaAtomicAdd(arr + index, value);
}

#ifdef PADDLE_WITH_CUDA
/*
 * One thead block deals with elementwise atomicAdd for vector of len.
 * @in: [x1, x2, x3, ...]
 * @out:[y1+x1, y2+x2, y3+x3, ...]
 * */
template <typename T, typename std::enable_if<!std::is_same<
                          platform::float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void VectorizedAtomicAddPerBlock(
    const int64_t len, int tid, int threads_per_block, const T *in, T *out) {
  for (int i = tid; i < len; i += threads_per_block) {
    CudaAtomicAdd(&out[i], in[i]);
  }
}

// Note: assume that len is even. If len is odd, call fastAtomicAdd directly.
template <typename T, typename std::enable_if<std::is_same<
                          platform::float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void VectorizedAtomicAddPerBlock(
    const int64_t len, int tid, int threads_per_block, const T *in, T *out) {
213 214 215 216 217 218
#if ((CUDA_VERSION < 10000) || \
     (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)))
  for (int i = tid; i < len; i += threads_per_block) {
    CudaAtomicAdd(&out[i], in[i]);
  }
#else
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  int i = 0;
  int loops = len / 2 * 2;

  bool aligned_half2 =
      (reinterpret_cast<std::uintptr_t>(out) % sizeof(__half2) == 0);

  if (aligned_half2) {
    for (i = tid * 2; i < loops; i += threads_per_block * 2) {
      __half2 value2;
      T value_1 = in[i];
      T value_2 = in[i + 1];
      value2.x = *reinterpret_cast<__half *>(&value_1);
      value2.y = *reinterpret_cast<__half *>(&value_2);
      atomicAdd(reinterpret_cast<__half2 *>(&out[i]), value2);
    }
    for (; i < len; i += threads_per_block) {
      fastAtomicAdd(out, i, len, in[i]);
    }
  } else {
    for (int i = tid; i < len; i += threads_per_block) {
      fastAtomicAdd(out, i, len, in[i]);
    }
  }
242
#endif
243 244
}
#endif
245
#endif
246

247
CUDA_ATOMIC_WRAPPER(Add, complex<float>) {
248 249
  float *real = reinterpret_cast<float *>(address);
  float *imag = real + 1;
250 251
  return complex<float>(CudaAtomicAdd(real, val.real),
                        CudaAtomicAdd(imag, val.imag));
252 253
}

254
CUDA_ATOMIC_WRAPPER(Add, complex<double>) {
255 256
  double *real = reinterpret_cast<double *>(address);
  double *imag = real + 1;
257 258
  return complex<double>(CudaAtomicAdd(real, val.real),
                         CudaAtomicAdd(imag, val.imag));
259 260
}

261 262 263 264 265
// For atomicMax
USE_CUDA_ATOMIC(Max, int);
USE_CUDA_ATOMIC(Max, unsigned int);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
266
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350)
267
USE_CUDA_ATOMIC(Max, unsigned long long int);  // NOLINT
268
#else
269
CUDA_ATOMIC_WRAPPER(Max, unsigned long long int) {  // NOLINT
270
  if (*address >= val) {
271
    return *address;
272 273
  }

274
  unsigned long long int old = *address, assumed;  // NOLINT
275 276 277 278 279 280 281 282 283 284 285

  do {
    assumed = old;
    if (assumed >= val) {
      break;
    }

    old = atomicCAS(address, assumed, val);
  } while (assumed != old);
}
#endif
286 287 288 289 290

CUDA_ATOMIC_WRAPPER(Max, int64_t) {
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
                "long long should be int64");
291 292 293 294 295 296 297 298 299 300 301
  long long int res = *address;  // NOLINT
  while (val > res) {
    long long int old = res;                                           // NOLINT
    res = (long long int)atomicCAS((unsigned long long int *)address,  // NOLINT
                                   (unsigned long long int)old,        // NOLINT
                                   (unsigned long long int)val);       // NOLINT
    if (res == old) {
      break;
    }
  }
  return res;
302 303 304 305
}

CUDA_ATOMIC_WRAPPER(Max, float) {
  if (*address >= val) {
306
    return *address;
307 308
  }

309
  int *const address_as_i = reinterpret_cast<int *>(address);
310 311 312 313 314 315 316 317 318 319
  int old = *address_as_i, assumed;

  do {
    assumed = old;
    if (__int_as_float(assumed) >= val) {
      break;
    }

    old = atomicCAS(address_as_i, assumed, __float_as_int(val));
  } while (assumed != old);
320 321

  return __int_as_float(old);
322 323 324 325
}

CUDA_ATOMIC_WRAPPER(Max, double) {
  if (*address >= val) {
326
    return *address;
327 328
  }

329 330 331
  unsigned long long int *const address_as_ull =            // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT
332 333 334 335 336 337 338 339 340

  do {
    assumed = old;
    if (__longlong_as_double(assumed) >= val) {
      break;
    }

    old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val));
  } while (assumed != old);
341 342

  return __longlong_as_double(old);
343 344 345 346 347 348 349
}

// For atomicMin
USE_CUDA_ATOMIC(Min, int);
USE_CUDA_ATOMIC(Min, unsigned int);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
350
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350)
351
USE_CUDA_ATOMIC(Min, unsigned long long int);  // NOLINT
352
#else
353
CUDA_ATOMIC_WRAPPER(Min, unsigned long long int) {  // NOLINT
354
  if (*address <= val) {
355
    return *address;
356 357
  }

358
  unsigned long long int old = *address, assumed;  // NOLINT
359 360 361 362 363 364 365 366 367 368 369

  do {
    assumed = old;
    if (assumed <= val) {
      break;
    }

    old = atomicCAS(address, assumed, val);
  } while (assumed != old);
}
#endif
370 371 372 373 374

CUDA_ATOMIC_WRAPPER(Min, int64_t) {
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
                "long long should be int64");
375 376 377 378 379 380 381 382 383 384 385
  long long int res = *address;  // NOLINT
  while (val < res) {
    long long int old = res;                                           // NOLINT
    res = (long long int)atomicCAS((unsigned long long int *)address,  // NOLINT
                                   (unsigned long long int)old,        // NOLINT
                                   (unsigned long long int)val);       // NOLINT
    if (res == old) {
      break;
    }
  }
  return res;
386 387 388 389
}

CUDA_ATOMIC_WRAPPER(Min, float) {
  if (*address <= val) {
390
    return *address;
391 392
  }

393
  int *const address_as_i = reinterpret_cast<int *>(address);
394 395 396 397 398 399 400 401 402 403
  int old = *address_as_i, assumed;

  do {
    assumed = old;
    if (__int_as_float(assumed) <= val) {
      break;
    }

    old = atomicCAS(address_as_i, assumed, __float_as_int(val));
  } while (assumed != old);
404 405

  return __int_as_float(old);
406 407 408 409
}

CUDA_ATOMIC_WRAPPER(Min, double) {
  if (*address <= val) {
410
    return *address;
411 412
  }

413 414 415
  unsigned long long int *const address_as_ull =            // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT
416 417 418 419 420 421 422 423 424

  do {
    assumed = old;
    if (__longlong_as_double(assumed) <= val) {
      break;
    }

    old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val));
  } while (assumed != old);
425 426

  return __longlong_as_double(old);
427 428
}

429 430
}  // namespace platform
}  // namespace paddle