elementwise_sub_op.cc 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
W
wanghuancoder 已提交
16

17
#include <string>
W
wanghuancoder 已提交
18

W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
20

W
wanghuancoder 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
struct CPUPlace;
}  // namespace platform
}  // namespace paddle

34 35 36
namespace paddle {
namespace operators {

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
template <typename T>
struct SameDimsElemwiseSub<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VSUB(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseSub<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x - eigen_y;
  }
};
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
class ElementwiseSubOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Sub"; }
  std::string GetEquation() const override { return "Out = X - Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Substract two tensors element-wise";
  }
};

H
hong 已提交
86 87
template <typename T>
class ElementwiseSubDoubleGradMaker : public framework::SingleGradOpMaker<T> {
88
 public:
H
hong 已提交
89
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
90 91

 protected:
92
  void Apply(GradOpPtr<T> op) const override {
93
    op->SetType("elementwise_sub_grad_grad");
H
hong 已提交
94 95 96 97
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
98

H
hong 已提交
99
    op->SetAttrMap(this->Attrs());
100

H
hong 已提交
101
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
102 103 104 105 106 107
  }
};

}  // namespace operators
}  // namespace paddle

108
REGISTER_ELEMWISE_GRAD_MAKER(elementwise_sub, Sub);
109
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(elementwise_sub, Sub);
110

111 112
namespace ops = paddle::operators;

H
hong 已提交
113
REGISTER_OPERATOR(
114 115
    elementwise_sub_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseGradOpInplaceInferer, ops::ElementwiseGradNoBufVarsInferer,
H
hong 已提交
116 117
    ops::ElementwiseSubDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseSubDoubleGradMaker<paddle::imperative::OpBase>);
118
REGISTER_OPERATOR(elementwise_sub_grad_grad,
119
                  ops::ElementwiseOpDoubleGradWithoutDXDY,
120 121
                  ops::ElementwiseDoubleGradOpInplaceInferer,
                  ops::ElementwiseDoubleGradNoBufVarsInferer);
122

G
gongweibao 已提交
123 124
REGISTER_OP_CPU_KERNEL(
    elementwise_sub,
Q
QI JUN 已提交
125 126 127 128
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, int64_t>);
G
gongweibao 已提交
129 130
REGISTER_OP_CPU_KERNEL(
    elementwise_sub_grad,
Q
QI JUN 已提交
131 132 133 134
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
135 136 137 138 139 140 141 142 143 144
REGISTER_OP_CPU_KERNEL(
    elementwise_sub_grad_grad,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);