instance_norm_kernel.cc 4.2 KB
Newer Older
Y
ykkk2333 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/instance_norm_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
18
#include "paddle/phi/kernels/funcs/math_function.h"
Y
ykkk2333 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace phi {

template <typename T, typename Context>
void InstanceNormKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const paddle::optional<DenseTensor>& scale,
                        const paddle::optional<DenseTensor>& bias,
                        float epsilon,
                        DenseTensor* y,
                        DenseTensor* saved_mean,
                        DenseTensor* saved_var) {
  using XPUType = typename XPUTypeTrait<T>::Type;

  const auto& x_dims = x.dims();
  int n = x_dims[0];
  int c = x_dims[1];
  int h = x_dims[2];
  int w = x_dims[3];
  dev_ctx.template Alloc<T>(y);
  dev_ctx.template Alloc<float>(saved_mean);
  dev_ctx.template Alloc<float>(saved_var);
41 42 43

  xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());

44
  // scale
Y
ykkk2333 已提交
45
  const auto scale_ptr = scale.get_ptr();
46 47
  const float* scale_data_fp32 = nullptr;
  if (scale_ptr == nullptr) {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    float* scale_data_temp = RAII_GUARD.alloc_l3_or_gm<float>(c);
    int r = xpu::constant<float>(dev_ctx.x_context(), scale_data_temp, c, 1.f);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
    scale_data_fp32 = scale_data_temp;
  } else if (scale_ptr->dtype() ==
             phi::CppTypeToDataType<phi::dtype::float16>::Type()) {
    float* scale_data_temp =
        RAII_GUARD.alloc_l3_or_gm<float>(scale_ptr->numel());
    int r = xpu::cast<XPUType, float>(
        dev_ctx.x_context(),
        reinterpret_cast<const XPUType*>(scale_ptr->data<T>()),
        scale_data_temp,
        scale_ptr->numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast");
    scale_data_fp32 = scale_data_temp;
63 64 65 66
  } else {
    // no need to cast
    scale_data_fp32 = scale_ptr->data<float>();
  }
67

68 69 70 71
  // bias
  const float* bias_data_fp32 = nullptr;
  const auto* bias_ptr = bias.get_ptr();
  if (bias_ptr == nullptr) {
72 73 74 75 76 77 78 79 80 81 82 83 84 85
    float* bias_data_temp = RAII_GUARD.alloc_l3_or_gm<float>(c);
    int r = xpu::constant<float>(dev_ctx.x_context(), bias_data_temp, c, 1.f);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
    bias_data_fp32 = bias_data_temp;
  } else if (bias_ptr->dtype() ==
             phi::CppTypeToDataType<phi::dtype::float16>::Type()) {
    float* bias_data_temp = RAII_GUARD.alloc_l3_or_gm<float>(bias_ptr->numel());
    int r = xpu::cast<XPUType, float>(
        dev_ctx.x_context(),
        reinterpret_cast<const XPUType*>(bias_ptr->data<T>()),
        bias_data_temp,
        bias_ptr->numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast");
    bias_data_fp32 = bias_data_temp;
86
  } else {
87
    // no need to cast
88 89
    bias_data_fp32 = bias_ptr->data<float>();
  }
Y
ykkk2333 已提交
90 91 92 93 94 95 96 97 98

  int r = xpu::instance_norm(dev_ctx.x_context(),
                             reinterpret_cast<const XPUType*>(x.data<T>()),
                             reinterpret_cast<XPUType*>(y->data<T>()),
                             n,
                             c,
                             h,
                             w,
                             epsilon,
99 100
                             scale_data_fp32,
                             bias_data_fp32,
Y
ykkk2333 已提交
101 102 103 104 105 106 107 108 109
                             saved_mean->data<float>(),
                             saved_var->data<float>(),
                             true);

  PADDLE_ENFORCE_XDNN_SUCCESS(r, "instance_norm");
}

}  // namespace phi

110 111 112 113 114 115
PD_REGISTER_KERNEL(instance_norm,
                   XPU,
                   ALL_LAYOUT,
                   phi::InstanceNormKernel,
                   float,
                   phi::dtype::float16) {}