to_string.py 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numpy as np
Z
zhiboniu 已提交
17
from ..framework import core
18 19
from paddle.fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype

20 21
__all__ = []

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

class PrintOptions(object):
    precision = 8
    threshold = 1000
    edgeitems = 3
    linewidth = 80
    sci_mode = False


DEFAULT_PRINT_OPTIONS = PrintOptions()


def set_printoptions(precision=None,
                     threshold=None,
                     edgeitems=None,
37 38
                     sci_mode=None,
                     linewidth=None):
39 40 41 42 43
    """Set the printing options for Tensor.

    Args:
        precision (int, optional): Number of digits of the floating number, default 8.
        threshold (int, optional): Total number of elements printed, default 1000.
44
        edgeitems (int, optional): Number of elements in summary at the beginning and ending of each dimension, default 3.
45
        sci_mode (bool, optional): Format the floating number with scientific notation or not, default False.
46 47
        linewidth (int, optional): Number of characters each line, default 80.
       
48 49 50 51 52 53 54 55 56
    
    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

C
cnn 已提交
57
            paddle.seed(10)
58 59 60 61 62
            a = paddle.rand([10, 20])
            paddle.set_printoptions(4, 100, 3)
            print(a)
            
            '''
63 64 65 66
            Tensor(shape=[10, 20], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
                   [[0.0002, 0.8503, 0.0135, ..., 0.9508, 0.2621, 0.6661],
                    [0.9710, 0.2605, 0.9950, ..., 0.4427, 0.9241, 0.9363],
                    [0.0948, 0.3226, 0.9955, ..., 0.1198, 0.0889, 0.9231],
67
                    ...,
68 69 70
                    [0.7206, 0.0941, 0.5292, ..., 0.4856, 0.1379, 0.0351],
                    [0.1745, 0.5621, 0.3602, ..., 0.2998, 0.4011, 0.1764],
                    [0.0728, 0.7786, 0.0314, ..., 0.2583, 0.1654, 0.0637]])
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
            '''
    """
    kwargs = {}

    if precision is not None:
        check_type(precision, 'precision', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.precision = precision
        kwargs['precision'] = precision
    if threshold is not None:
        check_type(threshold, 'threshold', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.threshold = threshold
        kwargs['threshold'] = threshold
    if edgeitems is not None:
        check_type(edgeitems, 'edgeitems', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.edgeitems = edgeitems
        kwargs['edgeitems'] = edgeitems
87 88 89 90
    if linewidth is not None:
        check_type(linewidth, 'linewidth', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.linewidth = linewidth
        kwargs['linewidth'] = linewidth
91 92 93 94 95 96 97
    if sci_mode is not None:
        check_type(sci_mode, 'sci_mode', (bool), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.sci_mode = sci_mode
        kwargs['sci_mode'] = sci_mode
    core.set_printoptions(**kwargs)


98
def _to_summary(var):
99 100
    edgeitems = DEFAULT_PRINT_OPTIONS.edgeitems

101 102 103 104
    # Handle tensor of shape contains 0, like [0, 2], [3, 0, 3]
    if np.prod(var.shape) == 0:
        return np.array([])

105 106 107 108
    if len(var.shape) == 0:
        return var
    elif len(var.shape) == 1:
        if var.shape[0] > 2 * edgeitems:
zhouweiwei2014's avatar
zhouweiwei2014 已提交
109
            return np.concatenate([var[:edgeitems], var[(-1 * edgeitems):]])
110 111 112 113 114 115
        else:
            return var
    else:
        # recursively handle all dimensions
        if var.shape[0] > 2 * edgeitems:
            begin = [x for x in var[:edgeitems]]
zhouweiwei2014's avatar
zhouweiwei2014 已提交
116
            end = [x for x in var[(-1 * edgeitems):]]
117
            return np.stack([_to_summary(x) for x in (begin + end)])
118
        else:
119
            return np.stack([_to_summary(x) for x in var])
120 121


122
def _format_item(np_var, max_width=0, signed=False):
123 124 125 126 127 128 129 130 131 132 133 134 135
    if np_var.dtype == np.float32 or np_var.dtype == np.float64 or np_var.dtype == np.float16:
        if DEFAULT_PRINT_OPTIONS.sci_mode:
            item_str = '{{:.{}e}}'.format(
                DEFAULT_PRINT_OPTIONS.precision).format(np_var)
        elif np.ceil(np_var) == np_var:
            item_str = '{:.0f}.'.format(np_var)
        else:
            item_str = '{{:.{}f}}'.format(
                DEFAULT_PRINT_OPTIONS.precision).format(np_var)
    else:
        item_str = '{}'.format(np_var)

    if max_width > len(item_str):
136 137 138 139 140 141 142 143
        if signed:  # handle sign character for tenosr with negative item
            if np_var < 0:
                return item_str.ljust(max_width)
            else:
                return ' ' + item_str.ljust(max_width - 1)
        else:
            return item_str.ljust(max_width)
    else:  # used for _get_max_width
144 145 146 147
        return item_str


def _get_max_width(var):
148
    # return max_width for a scalar
149
    max_width = 0
150 151 152 153
    signed = False
    for item in list(var.flatten()):
        if (not signed) and (item < 0):
            signed = True
154 155 156
        item_str = _format_item(item)
        max_width = max(max_width, len(item_str))

157
    return max_width, signed
158

159

160 161 162 163 164 165 166 167 168 169 170
def _format_tensor(var, summary, indent=0, max_width=0, signed=False):
    """
    Format a tensor

    Args:
        var(Tensor): The tensor to be formatted.
        summary(bool): Do summary or not. If true, some elements will not be printed, and be replaced with "...".
        indent(int): The indent of each line.
        max_width(int): The max width of each elements in var.
        signed(bool): Print +/- or not.
    """
171
    edgeitems = DEFAULT_PRINT_OPTIONS.edgeitems
172
    linewidth = DEFAULT_PRINT_OPTIONS.linewidth
173 174

    if len(var.shape) == 0:
L
Leo Chen 已提交
175 176
        # currently, shape = [], i.e., scaler tensor is not supported.
        # If it is supported, it should be formatted like this.
177
        return _format_item(var, max_width, signed)
178
    elif len(var.shape) == 1:
179 180 181 182 183
        item_length = max_width + 2
        items_per_line = (linewidth - indent) // item_length
        items_per_line = max(1, items_per_line)

        if summary and var.shape[0] > 2 * edgeitems:
184
            items = [
185
                _format_item(item, max_width, signed)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
186
                for item in list(var)[:edgeitems]
187
            ] + ['...'] + [
188
                _format_item(item, max_width, signed)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
189
                for item in list(var)[(-1 * edgeitems):]
190 191 192
            ]
        else:
            items = [
193
                _format_item(item, max_width, signed) for item in list(var)
194
            ]
195 196 197 198
        lines = [
            items[i:i + items_per_line]
            for i in range(0, len(items), items_per_line)
        ]
199 200
        s = (',\n' + ' ' * (indent + 1)).join(
            [', '.join(line) for line in lines])
201 202 203
        return '[' + s + ']'
    else:
        # recursively handle all dimensions
204
        if summary and var.shape[0] > 2 * edgeitems:
205
            vars = [
206
                _format_tensor(x, summary, indent + 1, max_width, signed)
207
                for x in var[:edgeitems]
208
            ] + ['...'] + [
209
                _format_tensor(x, summary, indent + 1, max_width, signed)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
210
                for x in var[(-1 * edgeitems):]
211 212
            ]
        else:
213
            vars = [
214
                _format_tensor(x, summary, indent + 1, max_width, signed)
215 216
                for x in var
            ]
217 218 219 220 221 222 223 224

        return '[' + (',' + '\n' * (len(var.shape) - 1) + ' ' *
                      (indent + 1)).join(vars) + ']'


def to_string(var, prefix='Tensor'):
    indent = len(prefix) + 1

225 226 227 228
    dtype = convert_dtype(var.dtype)
    if var.dtype == core.VarDesc.VarType.BF16:
        dtype = 'bfloat16'

229 230 231 232 233 234
    _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},\n{indent}{data})"

    tensor = var.value().get_tensor()
    if not tensor._is_initialized():
        return "Tensor(Not initialized)"

235 236
    if var.dtype == core.VarDesc.VarType.BF16:
        var = var.astype('float32')
237 238
    np_var = var.numpy()

239 240 241 242 243 244 245
    if len(var.shape) == 0:
        size = 0
    else:
        size = 1
        for dim in var.shape:
            size *= dim

246
    summary = False
247
    if size > DEFAULT_PRINT_OPTIONS.threshold:
248
        summary = True
249

250
    max_width, signed = _get_max_width(_to_summary(np_var))
251

252 253 254 255 256
    data = _format_tensor(np_var,
                          summary,
                          indent=indent,
                          max_width=max_width,
                          signed=signed)
257

258 259 260 261 262 263 264
    return _template.format(prefix=prefix,
                            shape=var.shape,
                            dtype=dtype,
                            place=var._place_str,
                            stop_gradient=var.stop_gradient,
                            indent=' ' * indent,
                            data=data)
265 266


267
def _format_dense_tensor(tensor, indent):
268 269 270
    if tensor.dtype == core.VarDesc.VarType.BF16:
        tensor = tensor.astype('float32')

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    np_tensor = tensor.numpy()

    if len(tensor.shape) == 0:
        size = 0
    else:
        size = 1
        for dim in tensor.shape:
            size *= dim

    sumary = False
    if size > DEFAULT_PRINT_OPTIONS.threshold:
        sumary = True

    max_width, signed = _get_max_width(_to_summary(np_tensor))

286 287 288 289 290
    data = _format_tensor(np_tensor,
                          sumary,
                          indent=indent,
                          max_width=max_width,
                          signed=signed)
291 292 293 294 295 296
    return data


def sparse_tensor_to_string(tensor, prefix='Tensor'):
    indent = len(prefix) + 1
    if tensor.is_sparse_coo():
297
        _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient}, \n{indent}{indices}, \n{indent}{values})"
298 299
        indices_tensor = tensor.indices()
        values_tensor = tensor.values()
300 301 302 303 304 305 306 307 308 309 310 311
        indices_data = 'indices=' + _format_dense_tensor(
            indices_tensor, indent + len('indices='))
        values_data = 'values=' + _format_dense_tensor(values_tensor,
                                                       indent + len('values='))
        return _template.format(prefix=prefix,
                                shape=tensor.shape,
                                dtype=tensor.dtype,
                                place=tensor._place_str,
                                stop_gradient=tensor.stop_gradient,
                                indent=' ' * indent,
                                indices=indices_data,
                                values=values_data)
312
    else:
313
        _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient}, \n{indent}{crows}, \n{indent}{cols}, \n{indent}{values})"
314 315 316
        crows_tensor = tensor.crows()
        cols_tensor = tensor.cols()
        elements_tensor = tensor.values()
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
        crows_data = 'crows=' + _format_dense_tensor(crows_tensor,
                                                     indent + len('crows='))
        cols_data = 'cols=' + _format_dense_tensor(cols_tensor,
                                                   indent + len('cols='))
        values_data = 'values=' + _format_dense_tensor(elements_tensor,
                                                       indent + len('values='))

        return _template.format(prefix=prefix,
                                shape=tensor.shape,
                                dtype=tensor.dtype,
                                place=tensor._place_str,
                                stop_gradient=tensor.stop_gradient,
                                indent=' ' * indent,
                                crows=crows_data,
                                cols=cols_data,
                                values=values_data)
333 334 335 336 337


def tensor_to_string(tensor, prefix='Tensor'):
    indent = len(prefix) + 1

338 339 340 341
    dtype = convert_dtype(tensor.dtype)
    if tensor.dtype == core.VarDesc.VarType.BF16:
        dtype = 'bfloat16'

342 343 344 345
    _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},\n{indent}{data})"

    if tensor.is_sparse():
        return sparse_tensor_to_string(tensor, prefix)
346 347 348

    if not tensor._is_dense_tensor_hold_allocation():
        return "Tensor(Not initialized)"
349 350
    else:
        data = _format_dense_tensor(tensor, indent)
351 352 353 354 355 356 357
        return _template.format(prefix=prefix,
                                shape=tensor.shape,
                                dtype=dtype,
                                place=tensor._place_str,
                                stop_gradient=tensor.stop_gradient,
                                indent=' ' * indent,
                                data=data)