efficientnet.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from .utils import (round_filters, round_repeats, drop_connect,
                    get_same_padding_conv2d, get_model_params,
                    efficientnet_params, load_pretrained_weights)


class MBConvBlock(nn.Layer):
    """
    Mobile Inverted Residual Bottleneck Block

    Args:
        block_args (namedtuple): BlockArgs, see above
        global_params (namedtuple): GlobalParam, see above

    Attributes:
        has_se (bool): Whether the block contains a Squeeze and Excitation layer.
    """

    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio is not None) and (
            0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # skip connection and drop connect

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Expansion phase
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(
                in_channels=inp,
                out_channels=oup,
                kernel_size=1,
                bias_attr=False)
            self._bn0 = nn.BatchNorm2D(
                num_features=oup, momentum=self._bn_mom, epsilon=self._bn_eps)

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        self._depthwise_conv = Conv2d(
            in_channels=oup,
            out_channels=oup,
            groups=oup,  # groups makes it depthwise
            kernel_size=k,
            stride=s,
            bias_attr=False)
        self._bn1 = nn.BatchNorm2D(
            num_features=oup, momentum=self._bn_mom, epsilon=self._bn_eps)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            num_squeezed_channels = max(1,
                                        int(self._block_args.input_filters *
                                            self._block_args.se_ratio))
            self._se_reduce = Conv2d(
                in_channels=oup,
                out_channels=num_squeezed_channels,
                kernel_size=1)
            self._se_expand = Conv2d(
                in_channels=num_squeezed_channels,
                out_channels=oup,
                kernel_size=1)

        # Output phase
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(
            in_channels=oup,
            out_channels=final_oup,
            kernel_size=1,
            bias_attr=False)
        self._bn2 = nn.BatchNorm2D(
            num_features=final_oup, momentum=self._bn_mom, epsilon=self._bn_eps)
        self._swish = nn.Hardswish()

    def forward(self, inputs, drop_connect_rate=None):
        """
        :param inputs: input tensor
        :param drop_connect_rate: drop connect rate (float, between 0 and 1)
        :return: output of block
        """

        # Expansion and Depthwise Convolution
        x = inputs
        if self._block_args.expand_ratio != 1:
            x = self._swish(self._bn0(self._expand_conv(inputs)))
        x = self._swish(self._bn1(self._depthwise_conv(x)))

        # Squeeze and Excitation
        if self.has_se:
            x_squeezed = F.adaptive_avg_pool2d(x, 1)
            x_squeezed = self._se_expand(
                self._swish(self._se_reduce(x_squeezed)))
            x = F.sigmoid(x_squeezed) * x

        x = self._bn2(self._project_conv(x))

        # Skip connection and drop connect
        input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
        if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
            if drop_connect_rate:
                x = drop_connect(
                    x, prob=drop_connect_rate, training=self.training)
            x = x + inputs  # skip connection
        return x

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export)"""
        self._swish = nn.Hardswish() if memory_efficient else nn.Swish()


class EfficientNet(nn.Layer):
    """
    An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods

    Args:
        blocks_args (list): A list of BlockArgs to construct blocks
        global_params (namedtuple): A set of GlobalParams shared between blocks

    Example:
        model = EfficientNet.from_pretrained('efficientnet-b0')

    """

    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Batch norm parameters
        bn_mom = self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(
            32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(
            in_channels, out_channels, kernel_size=3, stride=2, bias_attr=False)
        self._bn0 = nn.BatchNorm2D(
            num_features=out_channels, momentum=bn_mom, epsilon=bn_eps)

        # Build blocks
        self._blocks = nn.LayerList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            self._global_params),
                output_filters=round_filters(block_args.output_filters,
                                             self._global_params),
                num_repeat=round_repeats(block_args.num_repeat,
                                         self._global_params))

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(block_args, self._global_params))
            if block_args.num_repeat > 1:
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(
                    MBConvBlock(block_args, self._global_params))

        # Head
        in_channels = block_args.output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        self._conv_head = Conv2d(
            in_channels, out_channels, kernel_size=1, bias_attr=False)
        self._bn1 = nn.BatchNorm2D(
            num_features=out_channels, momentum=bn_mom, epsilon=bn_eps)

        # Final linear layer
        self._avg_pooling = nn.AdaptiveAvgPool2D(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        self._swish = nn.Hardswish()

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export)"""
        self._swish = nn.Hardswish() if memory_efficient else nn.Swish()
        for block in self._blocks:
            block.set_swish(memory_efficient)

    def extract_features(self, inputs):
        """ Returns output of the final convolution layer """

        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))

        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self._blocks)
            x = block(x, drop_connect_rate=drop_connect_rate)

        # Head
        x = self._swish(self._bn1(self._conv_head(x)))

        return x

    def forward(self, inputs):
        """ Calls extract_features to extract features, applies final linear layer, and returns logits. """
        bs = inputs.shape[0]
        # Convolution layers
        x = self.extract_features(inputs)

        # Pooling and final linear layer
        x = self._avg_pooling(x)
        x = paddle.reshape(x, (bs, -1))
        x = self._dropout(x)
        x = self._fc(x)
        return x

    @classmethod
    def from_name(cls, model_name, override_params=None):
        cls._check_model_name_is_valid(model_name)
        blocks_args, global_params = get_model_params(model_name,
                                                      override_params)
        return cls(blocks_args, global_params)

    @classmethod
    def from_pretrained(cls,
                        model_name,
                        advprop=False,
                        num_classes=1000,
                        in_channels=3):
        model = cls.from_name(
            model_name, override_params={'num_classes': num_classes})
        load_pretrained_weights(
            model, model_name, load_fc=(num_classes == 1000), advprop=advprop)
        if in_channels != 3:
            Conv2d = get_same_padding_conv2d(
                image_size=model._global_params.image_size)
            out_channels = round_filters(32, model._global_params)
            model._conv_stem = Conv2d(
                in_channels,
                out_channels,
                kernel_size=3,
                stride=2,
                bias_attr=False)
        return model

    @classmethod
    def get_image_size(cls, model_name):
        cls._check_model_name_is_valid(model_name)
        _, _, res, _ = efficientnet_params(model_name)
        return res

    @classmethod
    def _check_model_name_is_valid(cls, model_name):
        """ Validates model name. """
        valid_models = ['efficientnet-b' + str(i) for i in range(9)]
        if model_name not in valid_models:
            raise ValueError('model_name should be one of: ' + ', '.join(
                valid_models))