Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f3531c7b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f3531c7b
编写于
4月 18, 2022
作者:
H
huzhiqiang
提交者:
GitHub
4月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[infrt] add efficientnet model (#41507)
上级
037c8099
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
718 addition
and
5 deletion
+718
-5
paddle/infrt/tests/models/efficientnet-b4/model.py
paddle/infrt/tests/models/efficientnet-b4/model.py
+26
-0
paddle/infrt/tests/models/efficientnet-b4/net/__init__.py
paddle/infrt/tests/models/efficientnet-b4/net/__init__.py
+15
-0
paddle/infrt/tests/models/efficientnet-b4/net/efficientnet.py
...le/infrt/tests/models/efficientnet-b4/net/efficientnet.py
+284
-0
paddle/infrt/tests/models/efficientnet-b4/net/utils.py
paddle/infrt/tests/models/efficientnet-b4/net/utils.py
+385
-0
paddle/scripts/infrt_build.sh
paddle/scripts/infrt_build.sh
+8
-5
未找到文件。
paddle/infrt/tests/models/efficientnet-b4/model.py
0 → 100644
浏览文件 @
f3531c7b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# url: https://aistudio.baidu.com/aistudio/projectdetail/3756986?forkThirdPart=1
from
net
import
EfficientNet
from
paddle.jit
import
to_static
from
paddle.static
import
InputSpec
import
paddle
import
sys
model
=
EfficientNet
.
from_name
(
'efficientnet-b4'
)
net
=
to_static
(
model
,
input_spec
=
[
InputSpec
(
shape
=
[
None
,
3
,
256
,
256
],
name
=
'x'
)])
paddle
.
jit
.
save
(
net
,
sys
.
argv
[
1
])
paddle/infrt/tests/models/efficientnet-b4/net/__init__.py
0 → 100644
浏览文件 @
f3531c7b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.efficientnet
import
EfficientNet
paddle/infrt/tests/models/efficientnet-b4/net/efficientnet.py
0 → 100644
浏览文件 @
f3531c7b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
.utils
import
(
round_filters
,
round_repeats
,
drop_connect
,
get_same_padding_conv2d
,
get_model_params
,
efficientnet_params
,
load_pretrained_weights
)
class
MBConvBlock
(
nn
.
Layer
):
"""
Mobile Inverted Residual Bottleneck Block
Args:
block_args (namedtuple): BlockArgs, see above
global_params (namedtuple): GlobalParam, see above
Attributes:
has_se (bool): Whether the block contains a Squeeze and Excitation layer.
"""
def
__init__
(
self
,
block_args
,
global_params
):
super
().
__init__
()
self
.
_block_args
=
block_args
self
.
_bn_mom
=
global_params
.
batch_norm_momentum
self
.
_bn_eps
=
global_params
.
batch_norm_epsilon
self
.
has_se
=
(
self
.
_block_args
.
se_ratio
is
not
None
)
and
(
0
<
self
.
_block_args
.
se_ratio
<=
1
)
self
.
id_skip
=
block_args
.
id_skip
# skip connection and drop connect
# Get static or dynamic convolution depending on image size
Conv2d
=
get_same_padding_conv2d
(
image_size
=
global_params
.
image_size
)
# Expansion phase
inp
=
self
.
_block_args
.
input_filters
# number of input channels
oup
=
self
.
_block_args
.
input_filters
*
self
.
_block_args
.
expand_ratio
# number of output channels
if
self
.
_block_args
.
expand_ratio
!=
1
:
self
.
_expand_conv
=
Conv2d
(
in_channels
=
inp
,
out_channels
=
oup
,
kernel_size
=
1
,
bias_attr
=
False
)
self
.
_bn0
=
nn
.
BatchNorm2D
(
num_features
=
oup
,
momentum
=
self
.
_bn_mom
,
epsilon
=
self
.
_bn_eps
)
# Depthwise convolution phase
k
=
self
.
_block_args
.
kernel_size
s
=
self
.
_block_args
.
stride
self
.
_depthwise_conv
=
Conv2d
(
in_channels
=
oup
,
out_channels
=
oup
,
groups
=
oup
,
# groups makes it depthwise
kernel_size
=
k
,
stride
=
s
,
bias_attr
=
False
)
self
.
_bn1
=
nn
.
BatchNorm2D
(
num_features
=
oup
,
momentum
=
self
.
_bn_mom
,
epsilon
=
self
.
_bn_eps
)
# Squeeze and Excitation layer, if desired
if
self
.
has_se
:
num_squeezed_channels
=
max
(
1
,
int
(
self
.
_block_args
.
input_filters
*
self
.
_block_args
.
se_ratio
))
self
.
_se_reduce
=
Conv2d
(
in_channels
=
oup
,
out_channels
=
num_squeezed_channels
,
kernel_size
=
1
)
self
.
_se_expand
=
Conv2d
(
in_channels
=
num_squeezed_channels
,
out_channels
=
oup
,
kernel_size
=
1
)
# Output phase
final_oup
=
self
.
_block_args
.
output_filters
self
.
_project_conv
=
Conv2d
(
in_channels
=
oup
,
out_channels
=
final_oup
,
kernel_size
=
1
,
bias_attr
=
False
)
self
.
_bn2
=
nn
.
BatchNorm2D
(
num_features
=
final_oup
,
momentum
=
self
.
_bn_mom
,
epsilon
=
self
.
_bn_eps
)
self
.
_swish
=
nn
.
Hardswish
()
def
forward
(
self
,
inputs
,
drop_connect_rate
=
None
):
"""
:param inputs: input tensor
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
:return: output of block
"""
# Expansion and Depthwise Convolution
x
=
inputs
if
self
.
_block_args
.
expand_ratio
!=
1
:
x
=
self
.
_swish
(
self
.
_bn0
(
self
.
_expand_conv
(
inputs
)))
x
=
self
.
_swish
(
self
.
_bn1
(
self
.
_depthwise_conv
(
x
)))
# Squeeze and Excitation
if
self
.
has_se
:
x_squeezed
=
F
.
adaptive_avg_pool2d
(
x
,
1
)
x_squeezed
=
self
.
_se_expand
(
self
.
_swish
(
self
.
_se_reduce
(
x_squeezed
)))
x
=
F
.
sigmoid
(
x_squeezed
)
*
x
x
=
self
.
_bn2
(
self
.
_project_conv
(
x
))
# Skip connection and drop connect
input_filters
,
output_filters
=
self
.
_block_args
.
input_filters
,
self
.
_block_args
.
output_filters
if
self
.
id_skip
and
self
.
_block_args
.
stride
==
1
and
input_filters
==
output_filters
:
if
drop_connect_rate
:
x
=
drop_connect
(
x
,
prob
=
drop_connect_rate
,
training
=
self
.
training
)
x
=
x
+
inputs
# skip connection
return
x
def
set_swish
(
self
,
memory_efficient
=
True
):
"""Sets swish function as memory efficient (for training) or standard (for export)"""
self
.
_swish
=
nn
.
Hardswish
()
if
memory_efficient
else
nn
.
Swish
()
class
EfficientNet
(
nn
.
Layer
):
"""
An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods
Args:
blocks_args (list): A list of BlockArgs to construct blocks
global_params (namedtuple): A set of GlobalParams shared between blocks
Example:
model = EfficientNet.from_pretrained('efficientnet-b0')
"""
def
__init__
(
self
,
blocks_args
=
None
,
global_params
=
None
):
super
().
__init__
()
assert
isinstance
(
blocks_args
,
list
),
'blocks_args should be a list'
assert
len
(
blocks_args
)
>
0
,
'block args must be greater than 0'
self
.
_global_params
=
global_params
self
.
_blocks_args
=
blocks_args
# Get static or dynamic convolution depending on image size
Conv2d
=
get_same_padding_conv2d
(
image_size
=
global_params
.
image_size
)
# Batch norm parameters
bn_mom
=
self
.
_global_params
.
batch_norm_momentum
bn_eps
=
self
.
_global_params
.
batch_norm_epsilon
# Stem
in_channels
=
3
# rgb
out_channels
=
round_filters
(
32
,
self
.
_global_params
)
# number of output channels
self
.
_conv_stem
=
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
2
,
bias_attr
=
False
)
self
.
_bn0
=
nn
.
BatchNorm2D
(
num_features
=
out_channels
,
momentum
=
bn_mom
,
epsilon
=
bn_eps
)
# Build blocks
self
.
_blocks
=
nn
.
LayerList
([])
for
block_args
in
self
.
_blocks_args
:
# Update block input and output filters based on depth multiplier.
block_args
=
block_args
.
_replace
(
input_filters
=
round_filters
(
block_args
.
input_filters
,
self
.
_global_params
),
output_filters
=
round_filters
(
block_args
.
output_filters
,
self
.
_global_params
),
num_repeat
=
round_repeats
(
block_args
.
num_repeat
,
self
.
_global_params
))
# The first block needs to take care of stride and filter size increase.
self
.
_blocks
.
append
(
MBConvBlock
(
block_args
,
self
.
_global_params
))
if
block_args
.
num_repeat
>
1
:
block_args
=
block_args
.
_replace
(
input_filters
=
block_args
.
output_filters
,
stride
=
1
)
for
_
in
range
(
block_args
.
num_repeat
-
1
):
self
.
_blocks
.
append
(
MBConvBlock
(
block_args
,
self
.
_global_params
))
# Head
in_channels
=
block_args
.
output_filters
# output of final block
out_channels
=
round_filters
(
1280
,
self
.
_global_params
)
self
.
_conv_head
=
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
1
,
bias_attr
=
False
)
self
.
_bn1
=
nn
.
BatchNorm2D
(
num_features
=
out_channels
,
momentum
=
bn_mom
,
epsilon
=
bn_eps
)
# Final linear layer
self
.
_avg_pooling
=
nn
.
AdaptiveAvgPool2D
(
1
)
self
.
_dropout
=
nn
.
Dropout
(
self
.
_global_params
.
dropout_rate
)
self
.
_fc
=
nn
.
Linear
(
out_channels
,
self
.
_global_params
.
num_classes
)
self
.
_swish
=
nn
.
Hardswish
()
def
set_swish
(
self
,
memory_efficient
=
True
):
"""Sets swish function as memory efficient (for training) or standard (for export)"""
self
.
_swish
=
nn
.
Hardswish
()
if
memory_efficient
else
nn
.
Swish
()
for
block
in
self
.
_blocks
:
block
.
set_swish
(
memory_efficient
)
def
extract_features
(
self
,
inputs
):
""" Returns output of the final convolution layer """
# Stem
x
=
self
.
_swish
(
self
.
_bn0
(
self
.
_conv_stem
(
inputs
)))
# Blocks
for
idx
,
block
in
enumerate
(
self
.
_blocks
):
drop_connect_rate
=
self
.
_global_params
.
drop_connect_rate
if
drop_connect_rate
:
drop_connect_rate
*=
float
(
idx
)
/
len
(
self
.
_blocks
)
x
=
block
(
x
,
drop_connect_rate
=
drop_connect_rate
)
# Head
x
=
self
.
_swish
(
self
.
_bn1
(
self
.
_conv_head
(
x
)))
return
x
def
forward
(
self
,
inputs
):
""" Calls extract_features to extract features, applies final linear layer, and returns logits. """
bs
=
inputs
.
shape
[
0
]
# Convolution layers
x
=
self
.
extract_features
(
inputs
)
# Pooling and final linear layer
x
=
self
.
_avg_pooling
(
x
)
x
=
paddle
.
reshape
(
x
,
(
bs
,
-
1
))
x
=
self
.
_dropout
(
x
)
x
=
self
.
_fc
(
x
)
return
x
@
classmethod
def
from_name
(
cls
,
model_name
,
override_params
=
None
):
cls
.
_check_model_name_is_valid
(
model_name
)
blocks_args
,
global_params
=
get_model_params
(
model_name
,
override_params
)
return
cls
(
blocks_args
,
global_params
)
@
classmethod
def
from_pretrained
(
cls
,
model_name
,
advprop
=
False
,
num_classes
=
1000
,
in_channels
=
3
):
model
=
cls
.
from_name
(
model_name
,
override_params
=
{
'num_classes'
:
num_classes
})
load_pretrained_weights
(
model
,
model_name
,
load_fc
=
(
num_classes
==
1000
),
advprop
=
advprop
)
if
in_channels
!=
3
:
Conv2d
=
get_same_padding_conv2d
(
image_size
=
model
.
_global_params
.
image_size
)
out_channels
=
round_filters
(
32
,
model
.
_global_params
)
model
.
_conv_stem
=
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
2
,
bias_attr
=
False
)
return
model
@
classmethod
def
get_image_size
(
cls
,
model_name
):
cls
.
_check_model_name_is_valid
(
model_name
)
_
,
_
,
res
,
_
=
efficientnet_params
(
model_name
)
return
res
@
classmethod
def
_check_model_name_is_valid
(
cls
,
model_name
):
""" Validates model name. """
valid_models
=
[
'efficientnet-b'
+
str
(
i
)
for
i
in
range
(
9
)]
if
model_name
not
in
valid_models
:
raise
ValueError
(
'model_name should be one of: '
+
', '
.
join
(
valid_models
))
paddle/infrt/tests/models/efficientnet-b4/net/utils.py
0 → 100644
浏览文件 @
f3531c7b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
re
import
math
from
functools
import
partial
import
collections
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
# Parameters for the entire model (stem, all blocks, and head)
GlobalParams
=
collections
.
namedtuple
(
'GlobalParams'
,
[
'batch_norm_momentum'
,
'batch_norm_epsilon'
,
'dropout_rate'
,
'num_classes'
,
'width_coefficient'
,
'depth_coefficient'
,
'depth_divisor'
,
'min_depth'
,
'drop_connect_rate'
,
'image_size'
])
# Parameters for an individual model block
BlockArgs
=
collections
.
namedtuple
(
'BlockArgs'
,
[
'kernel_size'
,
'num_repeat'
,
'input_filters'
,
'output_filters'
,
'expand_ratio'
,
'id_skip'
,
'stride'
,
'se_ratio'
])
# Change namedtuple defaults
GlobalParams
.
__new__
.
__defaults__
=
(
None
,
)
*
len
(
GlobalParams
.
_fields
)
BlockArgs
.
__new__
.
__defaults__
=
(
None
,
)
*
len
(
BlockArgs
.
_fields
)
def
round_filters
(
filters
,
global_params
):
""" Calculate and round number of filters based on depth multiplier. """
multiplier
=
global_params
.
width_coefficient
if
not
multiplier
:
return
filters
divisor
=
global_params
.
depth_divisor
min_depth
=
global_params
.
min_depth
filters
*=
multiplier
min_depth
=
min_depth
or
divisor
new_filters
=
max
(
min_depth
,
int
(
filters
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_filters
<
0.9
*
filters
:
# prevent rounding by more than 10%
new_filters
+=
divisor
return
int
(
new_filters
)
def
round_repeats
(
repeats
,
global_params
):
""" Round number of filters based on depth multiplier. """
multiplier
=
global_params
.
depth_coefficient
if
not
multiplier
:
return
repeats
return
int
(
math
.
ceil
(
multiplier
*
repeats
))
def
drop_connect
(
inputs
,
prob
,
training
):
"""Drop input connection"""
if
not
training
:
return
inputs
keep_prob
=
1.0
-
prob
inputs_shape
=
paddle
.
shape
(
inputs
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
=
[
inputs_shape
[
0
],
1
,
1
,
1
])
binary_tensor
=
paddle
.
floor
(
random_tensor
)
output
=
inputs
/
keep_prob
*
binary_tensor
return
output
def
get_same_padding_conv2d
(
image_size
=
None
):
""" Chooses static padding if you have specified an image size, and dynamic padding otherwise.
Static padding is necessary for ONNX exporting of models. """
if
image_size
is
None
:
return
Conv2dDynamicSamePadding
else
:
return
partial
(
Conv2dStaticSamePadding
,
image_size
=
image_size
)
class
Conv2dDynamicSamePadding
(
nn
.
Conv2D
):
""" 2D Convolutions like TensorFlow, for a dynamic image size """
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
dilation
=
1
,
groups
=
1
,
bias_attr
=
None
):
super
().
__init__
(
in_channels
,
out_channels
,
kernel_size
,
stride
,
0
,
dilation
,
groups
,
bias_attr
=
bias_attr
)
self
.
stride
=
self
.
_stride
if
len
(
self
.
_stride
)
==
2
else
[
self
.
_stride
[
0
]]
*
2
def
forward
(
self
,
x
):
ih
,
iw
=
x
.
shape
[
-
2
:]
kh
,
kw
=
self
.
weight
.
shape
[
-
2
:]
sh
,
sw
=
self
.
stride
oh
,
ow
=
math
.
ceil
(
ih
/
sh
),
math
.
ceil
(
iw
/
sw
)
pad_h
=
max
((
oh
-
1
)
*
self
.
stride
[
0
]
+
(
kh
-
1
)
*
self
.
_dilation
[
0
]
+
1
-
ih
,
0
)
pad_w
=
max
((
ow
-
1
)
*
self
.
stride
[
1
]
+
(
kw
-
1
)
*
self
.
_dilation
[
1
]
+
1
-
iw
,
0
)
if
pad_h
>
0
or
pad_w
>
0
:
x
=
F
.
pad
(
x
,
[
pad_w
//
2
,
pad_w
-
pad_w
//
2
,
pad_h
//
2
,
pad_h
-
pad_h
//
2
])
return
F
.
conv2d
(
x
,
self
.
weight
,
self
.
bias
,
self
.
stride
,
self
.
_padding
,
self
.
_dilation
,
self
.
_groups
)
class
Conv2dStaticSamePadding
(
nn
.
Conv2D
):
""" 2D Convolutions like TensorFlow, for a fixed image size"""
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
image_size
=
None
,
**
kwargs
):
if
'stride'
in
kwargs
and
isinstance
(
kwargs
[
'stride'
],
list
):
kwargs
[
'stride'
]
=
kwargs
[
'stride'
][
0
]
super
().
__init__
(
in_channels
,
out_channels
,
kernel_size
,
**
kwargs
)
self
.
stride
=
self
.
_stride
if
len
(
self
.
_stride
)
==
2
else
[
self
.
_stride
[
0
]]
*
2
# Calculate padding based on image size and save it
assert
image_size
is
not
None
ih
,
iw
=
image_size
if
type
(
image_size
)
==
list
else
[
image_size
,
image_size
]
kh
,
kw
=
self
.
weight
.
shape
[
-
2
:]
sh
,
sw
=
self
.
stride
oh
,
ow
=
math
.
ceil
(
ih
/
sh
),
math
.
ceil
(
iw
/
sw
)
pad_h
=
max
((
oh
-
1
)
*
self
.
stride
[
0
]
+
(
kh
-
1
)
*
self
.
_dilation
[
0
]
+
1
-
ih
,
0
)
pad_w
=
max
((
ow
-
1
)
*
self
.
stride
[
1
]
+
(
kw
-
1
)
*
self
.
_dilation
[
1
]
+
1
-
iw
,
0
)
if
pad_h
>
0
or
pad_w
>
0
:
self
.
static_padding
=
nn
.
Pad2D
([
pad_w
//
2
,
pad_w
-
pad_w
//
2
,
pad_h
//
2
,
pad_h
-
pad_h
//
2
])
else
:
self
.
static_padding
=
Identity
()
def
forward
(
self
,
x
):
x
=
self
.
static_padding
(
x
)
x
=
F
.
conv2d
(
x
,
self
.
weight
,
self
.
bias
,
self
.
stride
,
self
.
_padding
,
self
.
_dilation
,
self
.
_groups
)
return
x
class
Identity
(
nn
.
Layer
):
def
__init__
(
self
,
):
super
().
__init__
()
def
forward
(
self
,
x
):
return
x
def
efficientnet_params
(
model_name
):
""" Map EfficientNet model name to parameter coefficients. """
params_dict
=
{
# Coefficients: width,depth,resolution,dropout
'efficientnet-b0'
:
(
1.0
,
1.0
,
224
,
0.2
),
'efficientnet-b1'
:
(
1.0
,
1.1
,
240
,
0.2
),
'efficientnet-b2'
:
(
1.1
,
1.2
,
260
,
0.3
),
'efficientnet-b3'
:
(
1.2
,
1.4
,
300
,
0.3
),
'efficientnet-b4'
:
(
1.4
,
1.8
,
380
,
0.4
),
'efficientnet-b5'
:
(
1.6
,
2.2
,
456
,
0.4
),
'efficientnet-b6'
:
(
1.8
,
2.6
,
528
,
0.5
),
'efficientnet-b7'
:
(
2.0
,
3.1
,
600
,
0.5
),
'efficientnet-b8'
:
(
2.2
,
3.6
,
672
,
0.5
),
'efficientnet-l2'
:
(
4.3
,
5.3
,
800
,
0.5
),
}
return
params_dict
[
model_name
]
class
BlockDecoder
(
object
):
""" Block Decoder for readability, straight from the official TensorFlow repository """
@
staticmethod
def
_decode_block_string
(
block_string
):
""" Gets a block through a string notation of arguments. """
assert
isinstance
(
block_string
,
str
)
ops
=
block_string
.
split
(
'_'
)
options
=
{}
for
op
in
ops
:
splits
=
re
.
split
(
r
'(\d.*)'
,
op
)
if
len
(
splits
)
>=
2
:
key
,
value
=
splits
[:
2
]
options
[
key
]
=
value
# Check stride
assert
((
's'
in
options
and
len
(
options
[
's'
])
==
1
)
or
(
len
(
options
[
's'
])
==
2
and
options
[
's'
][
0
]
==
options
[
's'
][
1
]))
return
BlockArgs
(
kernel_size
=
int
(
options
[
'k'
]),
num_repeat
=
int
(
options
[
'r'
]),
input_filters
=
int
(
options
[
'i'
]),
output_filters
=
int
(
options
[
'o'
]),
expand_ratio
=
int
(
options
[
'e'
]),
id_skip
=
(
'noskip'
not
in
block_string
),
se_ratio
=
float
(
options
[
'se'
])
if
'se'
in
options
else
None
,
stride
=
[
int
(
options
[
's'
][
0
])])
@
staticmethod
def
_encode_block_string
(
block
):
"""Encodes a block to a string."""
args
=
[
'r%d'
%
block
.
num_repeat
,
'k%d'
%
block
.
kernel_size
,
's%d%d'
%
(
block
.
strides
[
0
],
block
.
strides
[
1
]),
'e%s'
%
block
.
expand_ratio
,
'i%d'
%
block
.
input_filters
,
'o%d'
%
block
.
output_filters
]
if
0
<
block
.
se_ratio
<=
1
:
args
.
append
(
'se%s'
%
block
.
se_ratio
)
if
block
.
id_skip
is
False
:
args
.
append
(
'noskip'
)
return
'_'
.
join
(
args
)
@
staticmethod
def
decode
(
string_list
):
"""
Decodes a list of string notations to specify blocks inside the network.
:param string_list: a list of strings, each string is a notation of block
:return: a list of BlockArgs namedtuples of block args
"""
assert
isinstance
(
string_list
,
list
)
blocks_args
=
[]
for
block_string
in
string_list
:
blocks_args
.
append
(
BlockDecoder
.
_decode_block_string
(
block_string
))
return
blocks_args
@
staticmethod
def
encode
(
blocks_args
):
"""
Encodes a list of BlockArgs to a list of strings.
:param blocks_args: a list of BlockArgs namedtuples of block args
:return: a list of strings, each string is a notation of block
"""
block_strings
=
[]
for
block
in
blocks_args
:
block_strings
.
append
(
BlockDecoder
.
_encode_block_string
(
block
))
return
block_strings
def
efficientnet
(
width_coefficient
=
None
,
depth_coefficient
=
None
,
dropout_rate
=
0.2
,
drop_connect_rate
=
0.2
,
image_size
=
None
,
num_classes
=
1000
):
""" Get block arguments according to parameter and coefficients. """
blocks_args
=
[
'r1_k3_s11_e1_i32_o16_se0.25'
,
'r2_k3_s22_e6_i16_o24_se0.25'
,
'r2_k5_s22_e6_i24_o40_se0.25'
,
'r3_k3_s22_e6_i40_o80_se0.25'
,
'r3_k5_s11_e6_i80_o112_se0.25'
,
'r4_k5_s22_e6_i112_o192_se0.25'
,
'r1_k3_s11_e6_i192_o320_se0.25'
,
]
blocks_args
=
BlockDecoder
.
decode
(
blocks_args
)
global_params
=
GlobalParams
(
batch_norm_momentum
=
0.99
,
batch_norm_epsilon
=
1e-3
,
dropout_rate
=
dropout_rate
,
drop_connect_rate
=
drop_connect_rate
,
num_classes
=
num_classes
,
width_coefficient
=
width_coefficient
,
depth_coefficient
=
depth_coefficient
,
depth_divisor
=
8
,
min_depth
=
None
,
image_size
=
image_size
,
)
return
blocks_args
,
global_params
def
get_model_params
(
model_name
,
override_params
):
""" Get the block args and global params for a given model """
if
model_name
.
startswith
(
'efficientnet'
):
w
,
d
,
s
,
p
=
efficientnet_params
(
model_name
)
blocks_args
,
global_params
=
efficientnet
(
width_coefficient
=
w
,
depth_coefficient
=
d
,
dropout_rate
=
p
,
image_size
=
s
)
else
:
raise
NotImplementedError
(
'model name is not pre-defined: %s'
%
model_name
)
if
override_params
:
global_params
=
global_params
.
_replace
(
**
override_params
)
return
blocks_args
,
global_params
url_map
=
{
'efficientnet-b0'
:
'/home/aistudio/data/weights/efficientnet-b0-355c32eb.pdparams'
,
'efficientnet-b1'
:
'/home/aistudio/data/weights/efficientnet-b1-f1951068.pdparams'
,
'efficientnet-b2'
:
'/home/aistudio/data/weights/efficientnet-b2-8bb594d6.pdparams'
,
'efficientnet-b3'
:
'/home/aistudio/data/weights/efficientnet-b3-5fb5a3c3.pdparams'
,
'efficientnet-b4'
:
'/home/aistudio/data/weights/efficientnet-b4-6ed6700e.pdparams'
,
'efficientnet-b5'
:
'/home/aistudio/data/weights/efficientnet-b5-b6417697.pdparams'
,
'efficientnet-b6'
:
'/home/aistudio/data/weights/efficientnet-b6-c76e70fd.pdparams'
,
'efficientnet-b7'
:
'/home/aistudio/data/weights/efficientnet-b7-dcc49843.pdparams'
,
}
url_map_advprop
=
{
'efficientnet-b0'
:
'/home/aistudio/data/weights/adv-efficientnet-b0-b64d5a18.pdparams'
,
'efficientnet-b1'
:
'/home/aistudio/data/weights/adv-efficientnet-b1-0f3ce85a.pdparams'
,
'efficientnet-b2'
:
'/home/aistudio/data/weights/adv-efficientnet-b2-6e9d97e5.pdparams'
,
'efficientnet-b3'
:
'/home/aistudio/data/weights/adv-efficientnet-b3-cdd7c0f4.pdparams'
,
'efficientnet-b4'
:
'/home/aistudio/data/weights/adv-efficientnet-b4-44fb3a87.pdparams'
,
'efficientnet-b5'
:
'/home/aistudio/data/weights/adv-efficientnet-b5-86493f6b.pdparams'
,
'efficientnet-b6'
:
'/home/aistudio/data/weights/adv-efficientnet-b6-ac80338e.pdparams'
,
'efficientnet-b7'
:
'/home/aistudio/data/weights/adv-efficientnet-b7-4652b6dd.pdparams'
,
'efficientnet-b8'
:
'/home/aistudio/data/weights/adv-efficientnet-b8-22a8fe65.pdparams'
,
}
def
load_pretrained_weights
(
model
,
model_name
,
weights_path
=
None
,
load_fc
=
True
,
advprop
=
False
):
"""Loads pretrained weights from weights path or download using url.
Args:
model (Module): The whole model of efficientnet.
model_name (str): Model name of efficientnet.
weights_path (None or str):
str: path to pretrained weights file on the local disk.
None: use pretrained weights downloaded from the Internet.
load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model.
advprop (bool): Whether to load pretrained weights
trained with advprop (valid when weights_path is None).
"""
# AutoAugment or Advprop (different preprocessing)
url_map_
=
url_map_advprop
if
advprop
else
url_map
state_dict
=
paddle
.
load
(
url_map_
[
model_name
])
if
load_fc
:
model
.
set_state_dict
(
state_dict
)
else
:
state_dict
.
pop
(
'_fc.weight'
)
state_dict
.
pop
(
'_fc.bias'
)
model
.
set_state_dict
(
state_dict
)
print
(
'Loaded pretrained weights for {}'
.
format
(
model_name
))
paddle/scripts/infrt_build.sh
浏览文件 @
f3531c7b
...
@@ -44,11 +44,6 @@ function update_pd_ops() {
...
@@ -44,11 +44,6 @@ function update_pd_ops() {
cd
${
PADDLE_ROOT
}
/tools/infrt/
cd
${
PADDLE_ROOT
}
/tools/infrt/
python3 generate_pd_op_dialect_from_paddle_op_maker.py
python3 generate_pd_op_dialect_from_paddle_op_maker.py
python3 generate_phi_kernel_dialect.py
python3 generate_phi_kernel_dialect.py
# generate test model
cd
${
PADDLE_ROOT
}
mkdir
-p
${
PADDLE_ROOT
}
/build/models
python3 paddle/infrt/tests/models/abs_model.py
${
PADDLE_ROOT
}
/build/paddle/infrt/tests/abs
python3 paddle/infrt/tests/models/resnet50_model.py
${
PADDLE_ROOT
}
/build/models/resnet50/model
}
}
function
init
()
{
function
init
()
{
...
@@ -114,6 +109,14 @@ function create_fake_models() {
...
@@ -114,6 +109,14 @@ function create_fake_models() {
# create multi_fc model, this will generate "multi_fc_model"
# create multi_fc model, this will generate "multi_fc_model"
python3
-m
pip uninstall
-y
paddlepaddle
python3
-m
pip uninstall
-y
paddlepaddle
python3
-m
pip
install
*
whl
python3
-m
pip
install
*
whl
# generate test model
cd
${
PADDLE_ROOT
}
mkdir
-p
${
PADDLE_ROOT
}
/build/models
python3 paddle/infrt/tests/models/abs_model.py
${
PADDLE_ROOT
}
/build/paddle/infrt/tests/abs
python3 paddle/infrt/tests/models/resnet50_model.py
${
PADDLE_ROOT
}
/build/models/resnet50/model
python3 paddle/infrt/tests/models/efficientnet-b4/model.py
${
PADDLE_ROOT
}
/build/models/efficientnet-b4/model
cd
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
python3
${
PADDLE_ROOT
}
/tools/infrt/fake_models/multi_fc.py
python3
${
PADDLE_ROOT
}
/tools/infrt/fake_models/multi_fc.py
python3
${
PADDLE_ROOT
}
/paddle/infrt/tests/models/linear.py
python3
${
PADDLE_ROOT
}
/paddle/infrt/tests/models/linear.py
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录