fluid_mnist.py 2.5 KB
Newer Older
G
gx_wind 已提交
1 2 3 4 5 6
"""
CNN on mnist data using fluid api of paddlepaddle
"""
import paddle.v2 as paddle
import paddle.v2.fluid as fluid

G
gx_wind 已提交
7

G
gx_wind 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
def mnist_cnn_model(img):
    """
    Mnist cnn model

    Args:
        img(Varaible): the input image to be recognized

    Returns:
        Variable: the label prediction
    """
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        num_filters=20,
        filter_size=5,
        pool_size=2,
        pool_stride=2,
        act='relu')

    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        num_filters=50,
        filter_size=5,
        pool_size=2,
        pool_stride=2,
        act='relu')

G
gx_wind 已提交
34
    logits = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
G
gx_wind 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    return logits


def main():
    """
    Train the cnn model on mnist datasets
    """
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    logits = mnist_cnn_model(img)
    cost = fluid.layers.cross_entropy(input=logits, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    optimizer = fluid.optimizer.Adam(learning_rate=0.01)
    optimizer.minimize(avg_cost)

    accuracy = fluid.evaluator.Accuracy(input=logits, label=label)

    BATCH_SIZE = 50
    PASS_NUM = 3
    ACC_THRESHOLD = 0.98
    LOSS_THRESHOLD = 10.0
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)

    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
    exe.run(fluid.default_startup_program())

    for pass_id in range(PASS_NUM):
        accuracy.reset(exe)
        for data in train_reader():
            loss, acc = exe.run(fluid.default_main_program(),
                                feed=feeder.feed(data),
                                fetch_list=[avg_cost] + accuracy.metrics)
            pass_acc = accuracy.eval(exe)
G
gx_wind 已提交
73 74
            print("pass_id=" + str(pass_id) + " acc=" + str(acc) + " pass_acc="
                  + str(pass_acc))
G
gx_wind 已提交
75 76
            if loss < LOSS_THRESHOLD and pass_acc > ACC_THRESHOLD:
                break
G
gx_wind 已提交
77

G
gx_wind 已提交
78 79
        pass_acc = accuracy.eval(exe)
        print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc))
G
gx_wind 已提交
80 81
    fluid.io.save_params(
        exe, dirname='./mnist', main_program=fluid.default_main_program())
G
gx_wind 已提交
82
    print('train mnist done')
G
gx_wind 已提交
83

G
gx_wind 已提交
84 85 86

if __name__ == '__main__':
    main()