fluid_mnist.py 2.7 KB
Newer Older
G
gx_wind 已提交
1 2 3 4 5 6
"""
CNN on mnist data using fluid api of paddlepaddle
"""
import paddle.v2 as paddle
import paddle.v2.fluid as fluid

G
gx_wind 已提交
7

G
gx_wind 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
def mnist_cnn_model(img):
    """
    Mnist cnn model

    Args:
        img(Varaible): the input image to be recognized

    Returns:
        Variable: the label prediction
    """
    #conv1 = fluid.nets.conv2d()
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        num_filters=20,
        filter_size=5,
        pool_size=2,
        pool_stride=2,
        act='relu')

    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        num_filters=50,
        filter_size=5,
        pool_size=2,
        pool_stride=2,
        act='relu')

G
gx_wind 已提交
35
    logits = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
G
gx_wind 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    return logits


def main():
    """
    Train the cnn model on mnist datasets
    """
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    logits = mnist_cnn_model(img)
    cost = fluid.layers.cross_entropy(input=logits, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    optimizer = fluid.optimizer.Adam(learning_rate=0.01)
    optimizer.minimize(avg_cost)

    accuracy = fluid.evaluator.Accuracy(input=logits, label=label)

    BATCH_SIZE = 50
    PASS_NUM = 3
    ACC_THRESHOLD = 0.98
    LOSS_THRESHOLD = 10.0
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)

    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
    exe.run(fluid.default_startup_program())

    for pass_id in range(PASS_NUM):
        accuracy.reset(exe)
        for data in train_reader():
            loss, acc = exe.run(fluid.default_main_program(),
                                feed=feeder.feed(data),
                                fetch_list=[avg_cost] + accuracy.metrics)
            pass_acc = accuracy.eval(exe)
G
gx_wind 已提交
74 75
            print("pass_id=" + str(pass_id) + " acc=" + str(acc) + " pass_acc="
                  + str(pass_acc))
G
gx_wind 已提交
76 77 78 79
            # print loss, acc
            if loss < LOSS_THRESHOLD and pass_acc > ACC_THRESHOLD:
                # if avg cost less than 10.0 and accuracy is larger than 0.9, we think our code is good.
                break
G
gx_wind 已提交
80

G
gx_wind 已提交
81 82 83 84
#                exit(0)

        pass_acc = accuracy.eval(exe)
        print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc))
G
gx_wind 已提交
85 86
    fluid.io.save_params(
        exe, dirname='./mnist', main_program=fluid.default_main_program())
G
gx_wind 已提交
87 88 89 90 91
    print('train mnist done')
    exit(1)

if __name__ == '__main__':
    main()