ternary.cc 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/infermeta/ternary.h"
16

17 18
#include "glog/logging.h"

19
#include "paddle/phi/common/layout.h"
20 21
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
L
lyq 已提交
22
#include "paddle/phi/kernels/impl/box_coder.h"
23 24 25

namespace phi {

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
void AccuracyInferMeta(const MetaTensor& out,
                       const MetaTensor& indice,
                       const MetaTensor& label,
                       MetaTensor* accuracy,
                       MetaTensor* correct,
                       MetaTensor* total,
                       MetaConfig config) {
  auto inference_dim = out.dims();
  auto label_dim = label.dims();
  // Assume indices has same shape as inference, because
  // it's the output of topk.
  PADDLE_ENFORCE_EQ(
      label_dim.size(),
      2,
      phi::errors::InvalidArgument(
          "ShapeError: label's dimensions of AccuracyOp must be 2. "
          "But received label's dimensions = %d, label's shape = [%s]",
          label_dim.size(),
          label_dim));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(label_dim[1],
                      1,
                      phi::errors::InvalidArgument(
                          "ShapeError: label's second dimension of "
                          "AccuracyOp must be 1. But received label's "
                          "second dimension is = %d, label's shape = [%s]",
                          label_dim[1],
                          label_dim));
    PADDLE_ENFORCE_EQ(
        inference_dim[0],
        label_dim[0],
        phi::errors::InvalidArgument(
            "ShapeError: the output's num_rows of AccuracyOp must be"
            " the same as label's num_rows. But received output's "
            "shape = [%s], label's shape = [%s], output's num_rows = %d, "
            "label's "
            "num_rows = %d",
            inference_dim,
            label_dim,
            inference_dim[0],
            label_dim[0]));
  }

  accuracy->set_dims({1});
  accuracy->set_dtype(out.dtype());
  correct->set_dims({1});
  correct->set_dtype(out.dtype());
  total->set_dims({1});
  total->set_dtype(out.dtype());
  accuracy->share_lod(out);
}

78 79 80 81
void AddmmInferMeta(const MetaTensor& input,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    float beta,
82
                    float alpha,
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                    MetaTensor* out) {
  auto input_dims = input.dims();
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  auto ndim_input = input_dims.size();
  auto ndim_x = x_dims.size();
  auto ndim_y = y_dims.size();

  VLOG(3) << "addmm operator input.shape=" << input_dims
          << " x.shape=" << x_dims << " y.shape=" << y_dims << " beta=" << beta
          << " alpha=" << alpha << " ndim_input=" << ndim_input
          << " ndim_x=" << ndim_x << " ndim_y=" << ndim_y;

  PADDLE_ENFORCE_NE(
      product(input_dims),
      0,
      errors::PreconditionNotMet("The Input variable 'input' has not "
                                 "been initialized. You may need to confirm "
                                 "if you put exe.run(startup_program) "
                                 "after optimizer.minimize function."));

  PADDLE_ENFORCE_NE(
      product(x_dims),
      0,
      errors::PreconditionNotMet("The Input variable 'x' has not "
                                 "been initialized. You may need to confirm "
                                 "if you put exe.run(startup_program) "
                                 "after optimizer.minimize function."));

  PADDLE_ENFORCE_NE(
      product(y_dims),
      0,
      errors::PreconditionNotMet("The Input variable 'y' has not "
                                 "been initialized. You may need to confirm "
                                 "if you put exe.run(startup_program) "
                                 "after optimizer.minimize function."));
  // dim check
121 122 123 124 125 126
  PADDLE_ENFORCE_EQ(ndim_input == 2 || ndim_input == 1,
                    true,
                    errors::InvalidArgument(
                        "The input tensor input's dimension must be 2 or 1. "
                        "But received input's dimension = [%d].",
                        ndim_input));
127 128 129 130
  PADDLE_ENFORCE_EQ(
      ndim_x,
      2,
      errors::InvalidArgument("The input tensor x's dimension must be 2. "
131
                              "But received x's dimension = [%d].",
132 133 134 135 136
                              ndim_x));
  PADDLE_ENFORCE_EQ(
      ndim_y,
      2,
      errors::InvalidArgument("The input tensor y's dimension must be 2. "
137
                              "But received y's dimension = [%d].",
138 139 140 141 142 143 144 145 146 147 148
                              ndim_y));

  std::vector<int64_t> output_dims;
  output_dims.push_back(x_dims[0]);
  output_dims.push_back(y_dims[1]);

  out->set_dims(make_ddim(output_dims));
  out->share_lod(input);
  out->set_dtype(input.dtype());
}

L
lyq 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
void BoxCoderInferMeta(const MetaTensor& prior_box,
                       const MetaTensor& prior_box_var,
                       const MetaTensor& target_box,
                       const std::string& code_type,
                       bool box_normalized,
                       int axis,
                       const std::vector<float>& variance,
                       MetaTensor* output_box,
                       MetaConfig config) {
  auto prior_box_dims = prior_box.dims();
  auto target_box_dims = target_box.dims();

  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(prior_box_dims.size(),
                      2,
                      phi::errors::InvalidArgument(
                          "The rank of Input PriorBox in BoxCoder operator "
                          "must be 2. But received rank = %d",
                          prior_box_dims.size()));
    PADDLE_ENFORCE_EQ(prior_box_dims[1],
                      4,
                      phi::errors::InvalidArgument(
                          "The second dimension of PriorBox in BoxCoder "
                          "operator must be 4. But received dimension = %d",
                          prior_box_dims[1]));
    if (prior_box_var) {
      auto prior_box_var_dims = prior_box_var.dims();
      PADDLE_ENFORCE_EQ(
          prior_box_var_dims.size(),
          2,
          phi::errors::InvalidArgument(
              "The rank of Input(PriorBoxVar) in BoxCoder operator"
              " should be 2. But received rank = %d",
              prior_box_var_dims.size()));
      PADDLE_ENFORCE_EQ(
          prior_box_dims,
          prior_box_var_dims,
          phi::errors::InvalidArgument(
              "The dimension of Input(PriorBoxVar) should be equal to"
              "the dimension of Input(PriorBox) in BoxCoder operator "
              "when the rank is 2."));
    }
  }

  auto box_code_type = phi::funcs::GetBoxCodeType(code_type);
  if (box_code_type == phi::funcs::BoxCodeType::kEncodeCenterSize) {
    PADDLE_ENFORCE_EQ(target_box_dims.size(),
                      2,
                      phi::errors::InvalidArgument(
                          "The rank of Input TargetBox in BoxCoder operator "
                          "must be 2. But received rank is %d",
                          target_box_dims.size()));
    PADDLE_ENFORCE_EQ(target_box_dims[1],
                      4,
                      phi::errors::InvalidArgument(
                          "The second dimension of TargetBox in BoxCoder "
                          "operator is 4. But received dimension is %d",
                          target_box_dims[1]));
    output_box->set_dims({target_box_dims[0], prior_box_dims[0], 4});
  } else if (box_code_type == phi::funcs::BoxCodeType::kDecodeCenterSize) {
    PADDLE_ENFORCE_EQ(target_box_dims.size(),
                      3,
                      phi::errors::InvalidArgument(
                          "The rank of Input TargetBox in BoxCoder "
                          "operator must be 3. But received rank is %d",
                          target_box_dims.size()));
    PADDLE_ENFORCE_EQ(
        axis == 0 || axis == 1,
        true,
        phi::errors::InvalidArgument("axis in BoxCoder operator must be 0 or 1."
                                     "But received axis = %d",
                                     axis));
    if (config.is_runtime) {
      if (axis == 0) {
        PADDLE_ENFORCE_EQ(
            target_box_dims[1],
            prior_box_dims[0],
            phi::errors::InvalidArgument(
                "When axis is 0, The second "
                "dimension of TargetBox in BoxCoder "
                "should be equal to the first dimension of PriorBox."));
      } else if (axis == 1) {
        PADDLE_ENFORCE_EQ(
            target_box_dims[0],
            prior_box_dims[0],
            phi::errors::InvalidArgument(
                "When axis is 1, The first "
                "dimension of TargetBox in BoxCoder "
                "should be equal to the first dimension of PriorBox."));
      }
      PADDLE_ENFORCE_EQ(
          target_box_dims[2],
          prior_box_dims[1],
          phi::errors::InvalidArgument("The third dimension of TargetBox"
                                       " in BoxCoder should be equal to the "
                                       "second dimension of PriorBox."));
    }
    output_box->share_dims(target_box);
  }

  if (box_code_type == phi::funcs::BoxCodeType::kDecodeCenterSize &&
      axis == 1) {
    output_box->share_lod(prior_box);
  } else {
    output_box->share_lod(target_box);
  }
  output_box->set_dtype(target_box.dtype());
}

258 259 260 261 262
void FlashAttnInferMeta(const MetaTensor& q,
                        const MetaTensor& k,
                        const MetaTensor& v,
                        MetaTensor* out,
                        MetaTensor* softmax,
263
                        MetaTensor* softmax_lse,
264 265 266 267 268 269
                        MetaTensor* seed_offset) {
  out->set_dims(q.dims());
  out->set_dtype(q.dtype());
  out->set_layout(q.layout());
}

Z
zyfncg 已提交
270 271 272 273
void ArangeInferMeta(const MetaTensor& start,
                     const MetaTensor& end,
                     const MetaTensor& step,
                     MetaTensor* out) {
274
  PADDLE_ENFORCE_EQ(phi::product(start.dims()),
Z
zyfncg 已提交
275 276
                    1,
                    phi::errors::InvalidArgument(
277 278
                        "The numel of Input(start) should be 1, but got %d",
                        phi::product(start.dims())));
Z
zyfncg 已提交
279

280 281 282 283 284
  PADDLE_ENFORCE_EQ(phi::product(end.dims()),
                    1,
                    phi::errors::InvalidArgument(
                        "The numel of Input(end) should be 1, but got %d",
                        phi::product(end.dims())));
Z
zyfncg 已提交
285

286
  PADDLE_ENFORCE_EQ(phi::product(step.dims()),
Z
zyfncg 已提交
287 288
                    1,
                    phi::errors::InvalidArgument(
289 290 291
                        "The numel of Input(step) should be 1, but got %d",
                        phi::product(step.dims())));

Z
zyfncg 已提交
292 293 294 295
  out->set_dims({-1});
  out->set_dtype(start.dtype());
}

296
void InstanceNormInferMeta(const MetaTensor& x,
297 298
                           const MetaTensor& scale,
                           const MetaTensor& bias,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
                           float epsilon,
                           MetaTensor* y,
                           MetaTensor* saved_mean,
                           MetaTensor* saved_variance,
                           MetaConfig config) {
  PADDLE_ENFORCE_NE(y,
                    nullptr,
                    phi::errors::InvalidArgument(
                        "The y in InstanceNormInferMeta can't be nullptr."));
  const auto x_dims = x.dims();
  PADDLE_ENFORCE_NE(phi::product(x_dims),
                    0,
                    phi::errors::PreconditionNotMet(
                        "The Input variable X has not "
                        "been initialized. You may need to confirm "
                        "if you put exe.run(startup_program) "
                        "after optimizer.minimize function."));
  PADDLE_ENFORCE_GE(
      x_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "ShapeError: the dimension of input X must "
          "greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
          x_dims,
          x_dims.size()));
  PADDLE_ENFORCE_LE(
      x_dims.size(),
      5,
      phi::errors::InvalidArgument(
          "ShapeError: the dimension of input X must "
          "smaller than or equal to 5, But received: the shape of input "
          "X = [%s], the dimension of input X = [%d]",
          x_dims,
          x_dims.size()));
  auto N = x_dims[0];
  auto C = x_dims[1];
  auto NxC = N * C;
337 338
  if (scale) {
    auto scale_dim = scale.dims();
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    PADDLE_ENFORCE_EQ(
        scale_dim.size(),
        1UL,
        phi::errors::InvalidArgument(
            "ShapeError: the dimension of scale must equal to 1."
            "But received: the shape of scale is [%s], the dimension "
            "of scale is [%d]",
            scale_dim,
            scale_dim.size()));
    bool check = !((!config.is_runtime) && (phi::product(scale_dim) <= 0));
    if (check) {
      PADDLE_ENFORCE_EQ(scale_dim[0],
                        C,
                        phi::errors::InvalidArgument(
                            "ShapeError: the shape of scale must equal to [%d]"
                            "But received: the shape of scale is [%d]",
                            C,
                            scale_dim[0]));
    }
  }
359 360
  if (bias) {
    auto bias_dim = bias.dims();
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    PADDLE_ENFORCE_EQ(
        bias_dim.size(),
        1UL,
        phi::errors::InvalidArgument(
            "ShapeError: the dimension of bias must equal to 1."
            "But received: the shape of bias is [%s],the dimension "
            "of bias is [%d]",
            bias_dim,
            bias_dim.size()));
    bool check = !((!config.is_runtime) && (phi::product(bias_dim) <= 0));
    if (check) {
      PADDLE_ENFORCE_EQ(bias_dim[0],
                        C,
                        phi::errors::InvalidArgument(
                            "ShapeError: the shape of bias must equal to [%d]"
                            "But received: the shape of bias is [%d]",
                            C,
                            bias_dim[0]));
    }
  }
  y->set_dims(x_dims);
  y->share_lod(x);
  y->set_dtype(x.dtype());
  y->set_layout(x.layout());
385 386 387 388 389 390
  if (saved_mean) {
    saved_mean->set_dims({NxC});
  }
  if (saved_variance) {
    saved_variance->set_dims({NxC});
  }
391 392
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
void GroupNormInferMeta(const MetaTensor& x,
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        float epsilon,
                        int groups,
                        const std::string& data_layout_str,
                        MetaTensor* y,
                        MetaTensor* mean,
                        MetaTensor* variance) {
  PADDLE_ENFORCE_NE(y,
                    nullptr,
                    phi::errors::InvalidArgument(
                        "The y in GroupNormInferMeta can't be nullptr."));
  PADDLE_ENFORCE_NE(mean,
                    nullptr,
                    phi::errors::InvalidArgument(
                        "The mean in GroupNormInferMeta can't be nullptr."));
  PADDLE_ENFORCE_NE(
      variance,
      nullptr,
      phi::errors::InvalidArgument(
          "The variance in GroupNormInferMeta can't be nullptr."));

  auto x_dim = x.dims();
  PADDLE_ENFORCE_GE(
      x_dim.size(),
      2,
      phi::errors::InvalidArgument(
          "The Input(X)'s dimension of Op(group_norm) must be "
          "greater than 1. But received: %u-D Tensor, which shape is [%s].",
          x_dim.size(),
          x_dim));

426
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
  const int64_t channel_num =
      (data_layout == DataLayout::kNCHW ? x_dim[1] : x_dim[x_dim.size() - 1]);
  auto batch_size = x_dim[0];
  PADDLE_ENFORCE_LE(
      groups,
      channel_num,
      phi::errors::InvalidArgument(
          "The Attr(groups) of Op(group_norm) must be less than or "
          "equal to the number of channels. But received: groups "
          "is [%s], channels is [%s], the Attr(data_layout) "
          "is [%s]. The error may come from wrong data_layout setting.",
          groups,
          channel_num,
          data_layout_str));
  PADDLE_ENFORCE_GE(
      groups,
      1,
      phi::errors::InvalidArgument(
          "The Attr(groups) of Op(group_norm) must be "
          "greater than or equal to 1. But received: groups is [%s].",
          groups));
  PADDLE_ENFORCE_EQ(
      channel_num % groups,
      0,
      phi::errors::InvalidArgument(
          "Expected number of channels in input to be divisible by "
          "num_groups, but got input channel is %d and num_groups is %d",
          channel_num,
          groups));

  if (scale) {
    PADDLE_ENFORCE_EQ(
        scale.dims().size(),
        1UL,
        phi::errors::InvalidArgument(
            "The Input(Scale) of Op(group_norm) should be 1-D Tensor. "
            "But received: %u-D Tensor, the shape of Input(Scale) is [%s].",
            scale.dims().size(),
            scale.dims()));
    PADDLE_ENFORCE_EQ(
        scale.dims()[0],
        channel_num,
        phi::errors::InvalidArgument(
            "The Input(Scale)'s first dimension size of Op(group_norm) must "
            "be equal to the number of channels. But received: the "
            "Input(Scale)'s first dimension size is [%s], the channels is "
            "[%s], the Attr(data_layout) is [%s]. The error may come "
            "from wrong data_layout setting.",
            scale.dims()[0],
            channel_num,
            data_layout_str));
  }
  if (bias) {
    PADDLE_ENFORCE_EQ(
        bias.dims().size(),
        1UL,
        phi::errors::InvalidArgument(
            "The Input(Bias) of Op(group_norm) should be 1-D Tensor. "
            "But received: %u-D Tensor, the shape of Input(Bias) is [%s].",
            bias.dims().size(),
            bias.dims()));
    PADDLE_ENFORCE_EQ(
        bias.dims()[0],
        channel_num,
        phi::errors::InvalidArgument(
            "The Input(Bias)'s first dimension size of "
            "Op(group_norm) must be equal to the number of channels. "
            "But received: the Input(Bias)'s first dimension size is [%s], "
            "the channels is [%s], the Attr(data_layout) is [%s]. The "
            "error may come from wrong data_layout setting.",
            bias.dims()[0],
            channel_num,
            data_layout_str));
  }
  y->set_dims(x_dim);
  y->set_dtype(x.dtype());
  y->share_lod(x);
504 505 506 507 508 509 510 511 512 513 514 515 516 517

  phi::DataType x_dtype = x.dtype();
  phi::DataType param_type =
      (x_dtype == phi::DataType::BFLOAT16 || x_dtype == phi::DataType::FLOAT16)
          ? phi::DataType::FLOAT32
          : x_dtype;
  if (mean) {
    mean->set_dims({batch_size, groups});
    mean->set_dtype(param_type);
  }
  if (variance) {
    variance->set_dims({batch_size, groups});
    variance->set_dtype(param_type);
  }
518 519
}

H
hong 已提交
520
void LayerNormInferMeta(const MetaTensor& x,
521 522
                        const MetaTensor& scale,
                        const MetaTensor& bias,
H
hong 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
                        float epsilon,
                        int begin_norm_axis,
                        MetaTensor* out,
                        MetaTensor* mean,
                        MetaTensor* variance,
                        MetaConfig config) {
  auto x_dim = x.dims();
  PADDLE_ENFORCE_LT(
      begin_norm_axis,
      x_dim.size(),
      phi::errors::InvalidArgument(
          "'begin_norm_axis' must be less than the dimensions of X,"
          "But received 'begin_norm_axis' is [%d],"
          "received the dimensions of X is [%d].",
          begin_norm_axis,
          x_dim.size()));

  auto matrix_dim = phi::flatten_to_2d(x_dim, begin_norm_axis);
  int left = static_cast<int>(matrix_dim[0]);
  int right = static_cast<int>(matrix_dim[1]);
543 544
  if (scale) {
    PADDLE_ENFORCE_EQ(scale.dims().size(),
H
hong 已提交
545 546 547 548 549
                      1,
                      phi::errors::InvalidArgument(
                          "The dimensions of Input(Scale) must be 1, but "
                          "received dimensions of"
                          "Input(Scale) is [%d]",
550
                          scale.dims().size()));
H
hong 已提交
551 552
  }

553
  if (config.is_runtime && scale) {
H
hong 已提交
554
    PADDLE_ENFORCE_EQ(
555
        scale.dims()[0],
H
hong 已提交
556 557 558 559 560 561 562
        right,
        phi::errors::InvalidArgument(
            "The first dimension value of Input(Scale) must equal to be the"
            "second dimension value of the flattened 2D matrix of Input(X),"
            "But received the first dimension value of Input(Scale) is"
            "[%d], the second dimension value of the flattened 2D matrix of"
            " Input(Scale) is [%d].",
563
            scale.dims()[0],
H
hong 已提交
564 565
            right));
  }
566 567
  if (bias) {
    PADDLE_ENFORCE_EQ(bias.dims().size(),
H
hong 已提交
568 569 570 571 572
                      1,
                      phi::errors::InvalidArgument(
                          "The dimensions of Input(Bias) must be 1, but "
                          "received dimensions of"
                          "Input(Bias) is [%d]",
573
                          bias.dims().size()));
H
hong 已提交
574
  }
575
  if (config.is_runtime && bias) {
H
hong 已提交
576
    PADDLE_ENFORCE_EQ(
577
        bias.dims()[0],
H
hong 已提交
578 579 580 581 582 583 584
        right,
        phi::errors::InvalidArgument(
            "The first dimension value of Input(Bias) must equal to be the"
            "second dimension value of the flattened 2D matrix of Input(X),"
            "But received the first dimension value of Input(Bias) is"
            "[%d], the second dimension value of the flattened 2D matrix of"
            " Input(Bias) is [%d].",
585
            bias.dims()[0],
H
hong 已提交
586 587 588
            right));
  }

589
  phi::DataType x_dtype = x.dtype();
H
hong 已提交
590
  out->set_dims(x_dim);
591 592 593 594 595 596 597
  out->set_dtype(x_dtype);
  out->share_lod(x);

  phi::DataType param_type =
      (x_dtype == phi::DataType::BFLOAT16 || x_dtype == phi::DataType::FLOAT16)
          ? phi::DataType::FLOAT32
          : x_dtype;
H
hong 已提交
598 599
  if (mean) {
    mean->set_dims({left});
600
    mean->set_dtype(param_type);
H
hong 已提交
601 602 603
  }
  if (variance) {
    variance->set_dims({left});
604
    variance->set_dtype(param_type);
H
hong 已提交
605 606 607 608
  }
}

void LayerNormGradInferMeta(const MetaTensor& x,
609 610
                            const MetaTensor& y,
                            const MetaTensor& z,
H
hong 已提交
611 612 613 614 615 616
                            MetaTensor* dx,
                            MetaTensor* dy,
                            MetaTensor* dz) {
  if (dx) {
    dx->share_meta(x);
  }
617 618
  if (dy && y) {
    dy->share_meta(y);
H
hong 已提交
619
  }
620 621
  if (dz && z) {
    dz->share_meta(z);
H
hong 已提交
622 623 624
  }
}

625 626 627 628 629 630 631 632 633
void LerpInferMeta(const MetaTensor& x,
                   const MetaTensor& y,
                   const MetaTensor& weight,
                   MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto w_dims = weight.dims();
  DDim out_dims;
  out_dims = funcs::GetOutputDims(x_dims, y_dims);
S
sunli 已提交
634
  out_dims = funcs::GetOutputDims(out_dims, w_dims);
635 636 637 638 639
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

640 641 642 643
void LinspaceRawInferMeta(const MetaTensor& start,
                          const MetaTensor& stop,
                          const MetaTensor& number,
                          MetaTensor* out) {
644
  PADDLE_ENFORCE_EQ(
645 646 647 648 649 650
      phi::product(start.dims()),
      1,
      phi::errors::InvalidArgument("The size of Input(start) should be 1,"
                                   "but got %d.",
                                   phi::product(start.dims())));

651
  PADDLE_ENFORCE_EQ(
652 653 654 655 656 657
      phi::product(stop.dims()),
      1,
      phi::errors::InvalidArgument("The size of Input(stop) should be 1,"
                                   "but got %d.",
                                   phi::product(stop.dims())));

658
  PADDLE_ENFORCE_EQ(
659 660 661 662 663 664
      phi::product(number.dims()),
      1,
      phi::errors::InvalidArgument("The size of Input(number) should be 1,"
                                   "but got %d.",
                                   phi::product(number.dims())));

665 666 667 668
  out->set_dims(phi::make_ddim({-1}));
  out->set_dtype(start.dtype());
}

669 670 671 672 673 674 675 676
void LinspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       DataType dtype,
                       MetaTensor* out) {
  LinspaceRawInferMeta(start, stop, number, out);
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
void MultiClassNMSInferMeta(const MetaTensor& bboxes,
                            const MetaTensor& scores,
                            const MetaTensor& rois_num,
                            float score_threshold,
                            int nms_top_k,
                            int keep_top_k,
                            float nms_threshold,
                            bool normalized,
                            float nms_eta,
                            int background_label,
                            MetaTensor* out,
                            MetaTensor* index,
                            MetaTensor* nms_rois_num,
                            MetaConfig config) {
  auto box_dims = bboxes.dims();
  auto score_dims = scores.dims();
  auto score_size = score_dims.size();

  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        score_size == 2 || score_size == 3,
        true,
        errors::InvalidArgument("The rank of Input(Scores) must be 2 or 3"
                                ". But received rank = %d",
                                score_size));
    PADDLE_ENFORCE_EQ(
        box_dims.size(),
        3,
        errors::InvalidArgument("The rank of Input(BBoxes) must be 3"
                                ". But received rank = %d",
                                box_dims.size()));
    if (score_size == 3) {
      PADDLE_ENFORCE_EQ(box_dims[2] == 4 || box_dims[2] == 8 ||
                            box_dims[2] == 16 || box_dims[2] == 24 ||
                            box_dims[2] == 32,
                        true,
                        errors::InvalidArgument(
                            "The last dimension of Input"
                            "(BBoxes) must be 4 or 8, "
                            "represents the layout of coordinate "
                            "[xmin, ymin, xmax, ymax] or "
                            "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                            "8 points: [xi, yi] i= 1,2,...,8 or "
                            "12 points: [xi, yi] i= 1,2,...,12 or "
                            "16 points: [xi, yi] i= 1,2,...,16"));
      PADDLE_ENFORCE_EQ(
          box_dims[1],
          score_dims[2],
          errors::InvalidArgument(
              "The 2nd dimension of Input(BBoxes) must be equal to "
              "last dimension of Input(Scores), which represents the "
              "predicted bboxes."
              "But received box_dims[1](%s) != socre_dims[2](%s)",
              box_dims[1],
              score_dims[2]));
    } else {
      PADDLE_ENFORCE_EQ(box_dims[2],
                        4,
                        errors::InvalidArgument(
                            "The last dimension of Input"
                            "(BBoxes) must be 4. But received dimension = %d",
                            box_dims[2]));
      PADDLE_ENFORCE_EQ(
          box_dims[1],
          score_dims[1],
          errors::InvalidArgument(
              "The 2nd dimension of Input"
              "(BBoxes) must be equal to the 2nd dimension of Input(Scores). "
              "But received box dimension = %d, score dimension = %d",
              box_dims[1],
              score_dims[1]));
    }
  }
  PADDLE_ENFORCE_NE(out,
                    nullptr,
                    errors::InvalidArgument(
                        "The out in MultiClassNMSInferMeta can't be nullptr."));
  PADDLE_ENFORCE_NE(
      index,
      nullptr,
      errors::InvalidArgument(
          "The index in MultiClassNMSInferMeta can't be nullptr."));
  // Here the box_dims[0] is not the real dimension of output.
  // It will be rewritten in the computing kernel.

  out->set_dims(phi::make_ddim({-1, box_dims[2] + 2}));
  out->set_dtype(bboxes.dtype());
764
  index->set_dims(phi::make_ddim({-1, 1}));
765 766 767 768 769
  index->set_dtype(DataType::INT32);
  nms_rois_num->set_dims(phi::make_ddim({-1}));
  nms_rois_num->set_dtype(DataType::INT32);
}

770 771
void NllLossRawInferMeta(const MetaTensor& input,
                         const MetaTensor& label,
772
                         const MetaTensor& weight,
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
                         int64_t ignore_index,
                         const std::string& reduction,
                         MetaTensor* out,
                         MetaTensor* total_weight,
                         MetaConfig config) {
  auto x_dims = input.dims();
  auto label_dims = label.dims();
  PADDLE_ENFORCE_EQ(x_dims.size() == 2 || x_dims.size() == 4,
                    true,
                    phi::errors::InvalidArgument(
                        "The tensor rank of Input(X) must be 2 or 4."));
  bool contain_unknown_dim =
      phi::contain_unknown_dim(x_dims) || phi::contain_unknown_dim(label_dims);
  bool check = config.is_runtime || !contain_unknown_dim;
  if (check) {
    PADDLE_ENFORCE_EQ(
        x_dims[0],
        label_dims[0],
        phi::errors::InvalidArgument(
            "ShapeError: Expected input batch_size to match label batch_size,"
            "But received: the Input(x) batch_size is [%s], the Input(label) "
            " batch_size is [%s].",
            x_dims[0],
            label_dims[0]));
797 798
    if (weight) {
      auto w_dims = weight.dims();
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
      PADDLE_ENFORCE_EQ(
          w_dims.size(),
          1,
          phi::errors::InvalidArgument("Input(Weight) should be a 1D tensor."));
      PADDLE_ENFORCE_EQ(
          x_dims[1],
          w_dims[0],
          phi::errors::InvalidArgument(
              "Expected input tensor Weight's size should equal "
              "to the first dimension of the input tensor X. But received "
              "Weight's "
              "size is %d, the first dimension of input X is %d",
              w_dims[0],
              x_dims[1]));
    }
  }
  if (x_dims.size() == 2) {
    if (reduction == "none") {
      out->set_dims({x_dims[0]});
    } else {
      out->set_dims({1});
    }
  } else if (x_dims.size() == 4) {
    PADDLE_ENFORCE_EQ(label_dims.size(),
                      3,
                      phi::errors::InvalidArgument(
                          "Expected Input(Lable) dimensions=3, received %d.",
                          label_dims.size()));
    auto input0 = x_dims[0];
    auto input2 = x_dims[2];
    auto input3 = x_dims[3];
    auto label0 = label_dims[0];
    auto label1 = label_dims[1];
    auto label2 = label_dims[2];
    PADDLE_ENFORCE_EQ(
        input0 == label0 && input2 == label1 && input3 == label2,
        true,
        phi::errors::InvalidArgument("Input(X) tensor shape should "
                                     "match to Input(Label) tensor "
                                     "shape."));
    if (reduction == "none") {
      out->set_dims({x_dims[0], x_dims[2], x_dims[3]});
    } else {
      out->set_dims({1});
    }
  }
  total_weight->set_dims({1});
  out->set_dtype(input.dtype());
  total_weight->set_dtype(input.dtype());
}

850 851 852 853 854 855 856 857 858 859
void PutAlongAxisInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& value,
                           int axis,
                           const std::string& reduce,
                           MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
}

860 861
void RoiAlignInferMeta(const MetaTensor& x,
                       const MetaTensor& boxes,
862
                       const MetaTensor& boxes_num,
863 864 865 866 867 868 869 870 871 872 873
                       int pooled_height,
                       int pooled_width,
                       float spatial_scale,
                       int sampling_ratio,
                       bool aligned,
                       MetaTensor* out,
                       MetaConfig config) {
  auto input_dims = x.dims();
  auto boxes_dims = boxes.dims();

  if (boxes_num) {
874
    auto boxes_num_dims = boxes_num.dims();
875 876 877
    PADDLE_ENFORCE_EQ(
        boxes_num_dims.size(),
        1,
878
        phi::errors::InvalidArgument("The size of boxes_num should be 1"
879 880 881 882 883 884
                                     ", but received size = %d",
                                     boxes_num_dims.size()));
  }
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
885 886
                        "The format of Input(x) in"
                        "RoiAlignOp is NCHW. And the rank of input must be 4. "
887 888 889 890
                        "But received rank = %d",
                        input_dims.size()));
  PADDLE_ENFORCE_EQ(boxes_dims.size(),
                    2,
891 892 893
                    phi::errors::InvalidArgument("The rank of Input(boxes) "
                                                 "in RoiAlignOp should be 2. "
                                                 "But the rank of boxes is %d",
894 895 896 897 898 899
                                                 boxes_dims.size()));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(boxes_dims[1],
                      4,
                      phi::errors::InvalidArgument(
                          "The second dimension "
900
                          "of Input(boxes) should be 4. But received the "
901 902 903 904 905 906 907
                          "dimension = %d",
                          boxes_dims[1]));
  }

  PADDLE_ENFORCE_GT(pooled_height,
                    0,
                    phi::errors::InvalidArgument(
908
                        "The 'pooled_height' attribute in RoiAlignOp is "
909 910 911 912 913 914
                        "invalid. The height must be greater than 0. But "
                        "received 'pooled_height' = %d",
                        pooled_height));
  PADDLE_ENFORCE_GT(pooled_width,
                    0,
                    phi::errors::InvalidArgument(
915
                        "The 'pooled_width' attribute in RoiAlignOp is "
916 917 918 919 920 921
                        "invalid. The width must be greater than 0. But "
                        "received 'pooled_width' = %d",
                        pooled_width));
  PADDLE_ENFORCE_GT(spatial_scale,
                    0.0f,
                    phi::errors::InvalidArgument(
922
                        "The 'spatial_scale' attribute in RoiAlignOp is "
923 924 925 926 927 928 929 930 931 932 933 934 935 936
                        "invalid. The scale must be greater than 0. But "
                        "received 'spatial_scale' = %f",
                        spatial_scale));

  auto out_dims = input_dims;
  out_dims[0] = boxes_dims[0];
  out_dims[1] = input_dims[1];
  out_dims[2] = pooled_height;
  out_dims[3] = pooled_width;

  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
}

937 938
void RoiPoolInferMeta(const MetaTensor& x,
                      const MetaTensor& boxes,
939
                      const MetaTensor& boxes_num,
940 941 942 943 944 945 946 947 948
                      int pooled_height,
                      int pooled_width,
                      float spatial_scale,
                      MetaTensor* out,
                      MetaTensor* arg_max) {
  auto input_dims = x.dims();
  auto boxes_dims = boxes.dims();

  if (boxes_num) {
949
    auto boxes_num_dims = boxes_num.dims();
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    PADDLE_ENFORCE_EQ(
        boxes_num_dims.size(),
        1,
        phi::errors::InvalidArgument("The second dimension of boxes_num should "
                                     "be 1, but received dimension is %d",
                                     boxes_num_dims.size()));
  }
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "The input data should be a four-dimensional "
                        "tensor with [N,C,H,W], but received input data with "
                        " %d dimension",
                        input_dims.size()));
  PADDLE_ENFORCE_EQ(
      boxes_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "boxes should be a 2-D LoDTensor with shape (num_boxes, 4)"
          "given as [[x1, y1, x2, y2], ...], but received boxes is "
          "%d-dimensional LoDTensor",
          boxes_dims.size()));
  PADDLE_ENFORCE_EQ(
      boxes_dims[1],
      4,
      phi::errors::InvalidArgument(
          "boxes should be a 2-D LoDTensor with shape (num_boxes, 4)"
          "given as [[x1, y1, x2, y2], ...]. But the second dimension of  "
          "the received data is %d",
          boxes_dims[1]));

  PADDLE_ENFORCE_GT(
      pooled_height,
      0,
      phi::errors::OutOfRange("The pooled output height must be greater than 0"
                              "but received height is %d",
                              pooled_height));
  PADDLE_ENFORCE_GT(
      pooled_width,
      0,
      phi::errors::OutOfRange("The pooled output width must be greater than 0"
                              "but received width is %d",
                              pooled_width));
  PADDLE_ENFORCE_GT(
      spatial_scale,
      0.0f,
      phi::errors::OutOfRange("The spatial scale must be greater than 0, "
                              "but received spatial scale is %f",
                              spatial_scale));

  auto out_dims = input_dims;
  out_dims[0] = boxes_dims[0];
  out_dims[1] = input_dims[1];
  out_dims[2] = pooled_height;
  out_dims[3] = pooled_width;

  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  arg_max->set_dims(out_dims);
  arg_max->set_dtype(DataType::INT64);
}

1012 1013 1014 1015 1016 1017 1018 1019
void ScatterInferMeta(const MetaTensor& x,
                      const MetaTensor& index,
                      const MetaTensor& updates,
                      bool overwrite,
                      MetaTensor* out) {
  const auto& updates_dims = updates.dims();
  const auto& ref_dims = x.dims();
  const auto& index_dims = index.dims();
1020 1021 1022 1023 1024 1025 1026 1027 1028

  if (index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of the index should be 1 when the "
                          "index is a 2D tensor, but we get %d.",
                          index_dims[1]));
  } else {
1029 1030 1031 1032 1033 1034 1035 1036
    PADDLE_ENFORCE_EQ(index_dims.size() == 1 || index_dims.size() == 0,
                      true,
                      phi::errors::InvalidArgument(
                          "The index should be a 0D or 1D tensor when the "
                          "index is not a 2D tensor, but we get %d.",
                          index_dims.size()));
  }
  if (index_dims.size() != 0) {
1037
    PADDLE_ENFORCE_EQ(
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        (ref_dims.size() == updates_dims.size()),
        true,
        phi::errors::InvalidArgument(
            "When the Input(Updates) is not a 0D tensor, the "
            "Input(X) and Input(Updates) should have the same shape size, "
            "but received the size of Input(x)'s shape is %d, the size of "
            "Input(Updates)'s shape is %d.",
            ref_dims.size(),
            updates_dims.size()));
    PADDLE_ENFORCE_EQ(
        updates_dims[0],
        index_dims[0],
        phi::errors::InvalidArgument(
            "Input(Updates) and Input(Ids) should have same batch-size, but"
            " received Input(Updates)'s batch-size is %d, Input(Ids)'s "
            "batch-size is %d.",
            updates_dims[0],
            index_dims[0]));
1056
  }
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
  out->set_dims(ref_dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

void ScatterNdAddInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& updates,
                           MetaTensor* out) {
  const auto& ref_dims = x.dims();
  auto ref_dims_size = ref_dims.size();
  const auto& index_dims = index.dims();
  auto index_dims_size = index_dims.size();
  const auto& updates_dims = updates.dims();
  auto updates_dims_size = updates_dims.size();

1073 1074 1075 1076 1077 1078 1079
  if (updates_dims_size == 0) {
    // check for 0d updates
    PADDLE_ENFORCE_EQ(
        index_dims_size,
        1,
        phi::errors::InvalidArgument("When the updates is a 0d tensor, the "
                                     "index should be a 1d tensor."));
1080
    PADDLE_ENFORCE_EQ(
1081 1082
        index_dims[index_dims_size - 1],
        ref_dims_size,
1083
        phi::errors::InvalidArgument(
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
            "When the update is a 0d tensor, The last dimension of "
            "Input(Index)'s shape should be equal with the rank of Input(X)."));
  } else {
    PADDLE_ENFORCE_LE(
        index_dims[index_dims_size - 1],
        ref_dims_size,
        phi::errors::InvalidArgument(
            "The last dimension of Input(Index)'s shape should be no greater "
            "than the rank of Input(X), but received the last dimension of "
            "Input(Index)'s shape is %d, the rank of Input(X) is %d.",
            index_dims[index_dims_size - 1],
            ref_dims_size));
    PADDLE_ENFORCE_GE(index_dims_size,
W
wangxiaoning 已提交
1097
                      1UL,
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
                      phi::errors::InvalidArgument(
                          "The rank of Input(Index) should be greater than 1, "
                          "but received the rank of Input(Index) is %d.",
                          index_dims_size));

    // update.shape = index.shape[:-1] + output.shape[index.shape[-1]:]
    std::vector<int64_t> r_updates_dims;
    for (int64_t i = 0; i < index_dims_size - 1; ++i) {
      r_updates_dims.emplace_back(index_dims[i]);
    }
    for (int64_t i = index_dims[index_dims_size - 1]; i < ref_dims_size; ++i) {
      r_updates_dims.emplace_back(ref_dims[i]);
    }
    // check for non-0d updates
    PADDLE_ENFORCE_EQ(
        r_updates_dims.size(),
        updates_dims_size,
        phi::errors::InvalidArgument(
            "Updates has wrong shape. The shape of Updates and Input(Updates) "
            "should be same, but received the shape of Updates is %d, "
            "the shape of Input(Updates) is %d.",
            r_updates_dims.size(),
            updates_dims_size));

    for (int64_t i = 0; i < updates_dims_size; ++i) {
      PADDLE_ENFORCE_EQ(
          r_updates_dims[i],
          updates_dims[i],
          phi::errors::InvalidArgument(
              "Updates has wrong shape. The dimensions of Updates and "
              "Input(Updates) should match, but received Updates's"
              "%d-th dimension is %d, Input(Updates)'s %d-th "
              "dimension is %d.",
              i,
              r_updates_dims[i],
              i,
              updates_dims[i]));
    }
1136 1137 1138 1139 1140 1141
  }
  out->set_dims(ref_dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
void SendURecvInferMeta(const MetaTensor& x,
                        const MetaTensor& src_index,
                        const MetaTensor& dst_index,
                        const std::string& reduce_op,
                        const IntArray& out_size,
                        MetaTensor* out,
                        MetaTensor* dst_count) {
  auto src_index_dims = src_index.dims();
  if (src_index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(src_index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of Src_index should be 1 when it "
                          "is 2D, but we get %d",
                          src_index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        src_index_dims.size(),
        1,
        phi::errors::InvalidArgument(
            "The Src_index should be 1D, when it is not 2D, but we get %d",
            src_index_dims.size()));
  }

  auto dst_index_dims = dst_index.dims();
  if (dst_index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(dst_index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of Dst_index should be 1 when it "
                          "is 2D, but we get %d",
                          dst_index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        dst_index_dims.size(),
        1,
        phi::errors::InvalidArgument("The Dst_index should be 1D, "
                                     "when it is not 2D, but we get %d",
                                     dst_index_dims.size()));
  }

  PADDLE_ENFORCE_EQ(src_index_dims[0],
                    dst_index_dims[0],
                    phi::errors::InvalidArgument(
                        "Src_index and Dst_index should have the same shape."));

  auto dims = x.dims();
  std::vector<int64_t> dims_ = phi::vectorize(dims);
  dims_[0] = -1;
  out->set_dims(phi::make_ddim(dims_));
  out->set_dtype(x.dtype());

  if (reduce_op == "MEAN") {
    dst_count->set_dims({-1});
    dst_count->set_dtype(DataType::INT32);
  }
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
void SpectralNormInferMeta(const MetaTensor& weight,
                           const MetaTensor& u,
                           const MetaTensor& v,
                           int dim,
                           int power_iters,
                           float eps,
                           MetaTensor* out,
                           MetaConfig config) {
  auto dim_weight = weight.dims();
  auto rank_weight = dim_weight.size();
  PADDLE_ENFORCE_GE(rank_weight,
                    2,
                    errors::InvalidArgument(
                        "The rank of Input(Weights) should be greater equal "
                        "than 2, but received Weight rank(%d)",
                        rank_weight));
  PADDLE_ENFORCE_LE(
      rank_weight,
      5,
      errors::InvalidArgument("The rank of Input(Weights) should be less equal "
                              "than 5, but received Weight rank(%d)",
                              rank_weight));

  auto dim_valid = dim == 0 || dim == 1;
  PADDLE_ENFORCE_EQ(dim_valid,
                    true,
                    errors::InvalidArgument(
                        "Attr(dim) can only be 0 or 1, but received %d", dim));
  PADDLE_ENFORCE_GE(
      power_iters,
      0,
      errors::InvalidArgument(
          "Attr(power_iters) should be greater equal then 0, but received %d",
          power_iters));

  int h = dim_weight[dim];
  int w = 1;
  for (int i = 0; i < rank_weight; i++) {
    if (i != dim) {
      w *= dim_weight[i];
    }
  }
  auto dim_u = u.dims();
  auto dim_v = v.dims();

  if (config.is_runtime || (dim_u[0] > 0 && h > 0)) {
    PADDLE_ENFORCE_EQ(dim_u[0],
                      h,
                      errors::InvalidArgument(
                          "Input(U) dimension[0] should be equal to "
                          "Input(Weight) dimension[Attr(dim)], but received "
                          "U dimension[0](%d) != Weight dimension[%d](%d)",
                          dim_u[0],
                          dim,
                          h));
  }

  if (config.is_runtime || (dim_v[0] > 0 && w > 0)) {
    PADDLE_ENFORCE_EQ(
        dim_v[0],
        w,
        errors::InvalidArgument(
            "Input(V) dimension[0] should be equal to the product of "
            "Input(Weight) dimension except dimension[Attr(dim)], but "
            "received V dimension[0](%d) != product of Input(Weight) "
            "dimension(%d)",
            dim_v[0],
            w));
  }

  if (out) {
    out->set_dims(dim_weight);
    out->set_dtype(weight.dtype());
    out->share_lod(weight);
  }
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
void ViterbiDecodeInferMeta(const MetaTensor& input,
                            const MetaTensor& transition,
                            const MetaTensor& length,
                            bool include_bos_eos_tag,
                            MetaTensor* scores,
                            MetaTensor* path,
                            MetaConfig config) {
  auto in_dims = input.dims();
  PADDLE_ENFORCE_EQ(in_dims.size(),
                    3,
                    phi::errors::InvalidArgument(
                        "The rank of Input in ViterbiDecode  must be 3. But "
                        "received Input's rank is %d.",
                        in_dims.size()));
  auto length_dims = length.dims();
  PADDLE_ENFORCE_EQ(length_dims.size(),
                    1,
                    phi::errors::InvalidArgument(
                        "The rank of Length in ViterbiDecode must be 1. But "
                        "received Length's rank is %d.",
                        length_dims.size()));
  auto transition_dims = transition.dims();
  PADDLE_ENFORCE_EQ(
      transition_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "The rank of Transition in ViterbiDecode must be 2. But "
          "received Transition's rank is %d.",
          transition_dims.size()));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        in_dims[0],
        length_dims[0],
        phi::errors::InvalidArgument(
            "The batch size of Input and Length should be equal."));
    PADDLE_ENFORCE_EQ(in_dims[2],
                      transition_dims[0],
                      phi::errors::InvalidArgument(
                          "The number of tags of Input (%d) and Transition "
                          "(%d) should be equal.",
                          transition_dims[0],
                          in_dims[2]));
  }
  scores->set_dims(length_dims);
  scores->set_dtype(length.dtype());
}

1324
}  // namespace phi