Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d35b5b58
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d35b5b58
编写于
3月 11, 2022
作者:
X
xiongkun
提交者:
GitHub
3月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[phi] [infershape] transfer nll_loss infer shape into phi (#40375)
* transfer nll_loss infershape into phi
上级
9ebe7276
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
95 addition
and
72 deletion
+95
-72
paddle/fluid/operators/nll_loss_op.cc
paddle/fluid/operators/nll_loss_op.cc
+6
-72
paddle/phi/infermeta/ternary.cc
paddle/phi/infermeta/ternary.cc
+80
-0
paddle/phi/infermeta/ternary.h
paddle/phi/infermeta/ternary.h
+9
-0
未找到文件。
paddle/fluid/operators/nll_loss_op.cc
浏览文件 @
d35b5b58
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/ternary.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -23,77 +25,6 @@ class NLLLossOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"NLLLoss"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Label"
),
"Input"
,
"Label"
,
"NLLLoss"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"NLLLoss"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Total_weight"
),
"Output"
,
"Total_weight"
,
"NLLLoss"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
reduction
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"reduction"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
()
==
2
||
x_dims
.
size
()
==
4
,
true
,
platform
::
errors
::
InvalidArgument
(
"The tensor rank of Input(X) must be 2 or 4."
));
bool
contain_unknown_dim
=
phi
::
contain_unknown_dim
(
x_dims
)
||
phi
::
contain_unknown_dim
(
label_dims
);
bool
check
=
ctx
->
IsRuntime
()
||
!
contain_unknown_dim
;
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"ShapeError: Expected input batch_size to match label batch_size,"
"But received: the Input(x) batch_size is [%s], the Input(label) "
" batch_size is [%s]."
,
x_dims
[
0
],
label_dims
[
0
]));
if
(
ctx
->
HasInput
(
"Weight"
))
{
auto
w_dims
=
ctx
->
GetInputDim
(
"Weight"
);
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(Weight) should be a 1D tensor."
));
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
w_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"Expected input tensor Weight's size should equal "
"to the first dimension of the input tensor X. But received "
"Weight's "
"size is %d, the first dimension of input X is %d"
,
w_dims
[
0
],
x_dims
[
1
]));
}
}
if
(
x_dims
.
size
()
==
2
)
{
if
(
reduction
==
"none"
)
{
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
]});
}
else
{
ctx
->
SetOutputDim
(
"Out"
,
{
1
});
}
}
else
if
(
x_dims
.
size
()
==
4
)
{
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
3
,
platform
::
errors
::
InvalidArgument
(
"Expected Input(Lable) dimensions=3, received %d."
,
label_dims
.
size
()));
auto
input0
=
x_dims
[
0
];
auto
input2
=
x_dims
[
2
];
auto
input3
=
x_dims
[
3
];
auto
label0
=
label_dims
[
0
];
auto
label1
=
label_dims
[
1
];
auto
label2
=
label_dims
[
2
];
PADDLE_ENFORCE_EQ
(
input0
==
label0
&&
input2
==
label1
&&
input3
==
label2
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(X) tensor shape should "
"match to Input(Label) tensor "
"shape."
));
if
(
reduction
==
"none"
)
{
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
x_dims
[
2
],
x_dims
[
3
]});
}
else
{
ctx
->
SetOutputDim
(
"Out"
,
{
1
});
}
}
ctx
->
SetOutputDim
(
"Total_weight"
,
{
1
});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -259,8 +190,11 @@ class NLLLossGradMaker : public framework::SingleGradOpMaker<T> {
}
// namespace operators
}
// namespace paddle
DECLARE_INFER_SHAPE_FUNCTOR
(
nll_loss
,
NllLossRawInferShapeFunctor
,
PD_INFER_META
(
phi
::
NllLossRawInferMeta
));
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
nll_loss
,
ops
::
NLLLossOp
,
ops
::
NLLLossOpMaker
,
ops
::
NLLLossGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
NLLLossGradMaker
<
paddle
::
imperative
::
OpBase
>
);
ops
::
NLLLossGradMaker
<
paddle
::
imperative
::
OpBase
>
,
NllLossRawInferShapeFunctor
);
REGISTER_OPERATOR
(
nll_loss_grad
,
ops
::
NLLLossGradOp
);
paddle/phi/infermeta/ternary.cc
浏览文件 @
d35b5b58
...
...
@@ -89,6 +89,86 @@ void AddmmInferMeta(const MetaTensor& input,
out
->
set_dtype
(
input
.
dtype
());
}
void
NllLossRawInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
paddle
::
optional
<
const
MetaTensor
&>
weight
,
int64_t
ignore_index
,
const
std
::
string
&
reduction
,
MetaTensor
*
out
,
MetaTensor
*
total_weight
,
MetaConfig
config
)
{
auto
x_dims
=
input
.
dims
();
auto
label_dims
=
label
.
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
.
size
()
==
2
||
x_dims
.
size
()
==
4
,
true
,
phi
::
errors
::
InvalidArgument
(
"The tensor rank of Input(X) must be 2 or 4."
));
bool
contain_unknown_dim
=
phi
::
contain_unknown_dim
(
x_dims
)
||
phi
::
contain_unknown_dim
(
label_dims
);
bool
check
=
config
.
is_runtime
||
!
contain_unknown_dim
;
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
phi
::
errors
::
InvalidArgument
(
"ShapeError: Expected input batch_size to match label batch_size,"
"But received: the Input(x) batch_size is [%s], the Input(label) "
" batch_size is [%s]."
,
x_dims
[
0
],
label_dims
[
0
]));
if
(
weight
.
get_ptr
()
!=
nullptr
)
{
auto
w_dims
=
weight
->
dims
();
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"Input(Weight) should be a 1D tensor."
));
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
w_dims
[
0
],
phi
::
errors
::
InvalidArgument
(
"Expected input tensor Weight's size should equal "
"to the first dimension of the input tensor X. But received "
"Weight's "
"size is %d, the first dimension of input X is %d"
,
w_dims
[
0
],
x_dims
[
1
]));
}
}
if
(
x_dims
.
size
()
==
2
)
{
if
(
reduction
==
"none"
)
{
out
->
set_dims
({
x_dims
[
0
]});
}
else
{
out
->
set_dims
({
1
});
}
}
else
if
(
x_dims
.
size
()
==
4
)
{
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
3
,
phi
::
errors
::
InvalidArgument
(
"Expected Input(Lable) dimensions=3, received %d."
,
label_dims
.
size
()));
auto
input0
=
x_dims
[
0
];
auto
input2
=
x_dims
[
2
];
auto
input3
=
x_dims
[
3
];
auto
label0
=
label_dims
[
0
];
auto
label1
=
label_dims
[
1
];
auto
label2
=
label_dims
[
2
];
PADDLE_ENFORCE_EQ
(
input0
==
label0
&&
input2
==
label1
&&
input3
==
label2
,
true
,
phi
::
errors
::
InvalidArgument
(
"Input(X) tensor shape should "
"match to Input(Label) tensor "
"shape."
));
if
(
reduction
==
"none"
)
{
out
->
set_dims
({
x_dims
[
0
],
x_dims
[
2
],
x_dims
[
3
]});
}
else
{
out
->
set_dims
({
1
});
}
}
total_weight
->
set_dims
({
1
});
out
->
set_dtype
(
input
.
dtype
());
total_weight
->
set_dtype
(
input
.
dtype
());
}
void
ScatterInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
updates
,
...
...
paddle/phi/infermeta/ternary.h
浏览文件 @
d35b5b58
...
...
@@ -56,6 +56,15 @@ void ScatterInferMeta(const MetaTensor& x,
bool
overwrite
,
MetaTensor
*
out
);
void
NllLossRawInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
paddle
::
optional
<
const
MetaTensor
&>
weight
,
int64_t
ignore_index
,
const
std
::
string
&
reduction
,
MetaTensor
*
out
,
MetaTensor
*
total_weight
,
MetaConfig
config
=
MetaConfig
());
void
ScatterNdAddInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
updates
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录