check_nan_inf_base.py 3.7 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import unicode_literals
from __future__ import print_function

import os
import sys
import time
import numpy as np

os.environ[str("FLAGS_check_nan_inf")] = str("1")
os.environ[str("GLOG_vmodule")] = str("nan_inf_utils_detail=10")

import paddle.fluid.core as core
import paddle
import paddle.fluid as fluid
import paddle.compat as cpt

P
pangyoki 已提交
31 32
paddle.enable_static()

W
WangXi 已提交
33 34 35 36 37 38
np.random.seed(0)


def generator():
    batch_size = 5
    for i in range(5):
39 40
        curr_train_x = np.random.randint(batch_size,
                                         size=(batch_size, 3)).astype("float32")
W
WangXi 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        if i >= 2:
            curr_train_x[0, :] = np.nan
            curr_train_x[-1, :] = np.inf
        res = []
        for i in range(batch_size):
            y = i % 3
            res.append([y])
        y_label = np.array(res).astype('int64')
        yield [curr_train_x, y_label]


def net():
    x = fluid.layers.data(name="x", shape=[3], dtype='float32')
    y = fluid.layers.data(name="y", shape=[1], dtype='int64')

    # test int64 value
    zero = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)

    # test float16 value
    fp16_zero = fluid.layers.cast(zero, dtype='float16')

    y = y + zero

    hidden = x

    for i in range(2):
        hidden = fluid.layers.fc(input=hidden, size=400, act="sigmoid")

    hidden = fluid.layers.fc(input=hidden, size=3, act=None)
    cost, y_predict = fluid.layers.softmax_with_cross_entropy(
        hidden, y, return_softmax=True)
    acc_top1 = fluid.layers.accuracy(input=y_predict, label=y, k=1)
73
    avg_cost = paddle.mean(cost)
W
WangXi 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.05)
    sgd_optimizer.minimize(avg_cost)
    return y_predict, avg_cost, acc_top1


def check(use_cuda):
    main = fluid.Program()
    startup = fluid.Program()
    scope = fluid.core.Scope()

    with fluid.scope_guard(scope):
        with fluid.program_guard(main, startup):
            y_predict, avg_cost, acc_top1 = net()

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup)

            step = 0.0
            for train_data, y_label in generator():
                outs = exe.run(
                    main,
97 98 99 100
                    feed={
                        'x': train_data,
                        'y': y_label
                    },
W
WangXi 已提交
101 102
                    fetch_list=[y_predict.name, avg_cost.name, acc_top1.name])
                step += 1
103 104
                print('iter={:.0f},cost={},acc1={}'.format(
                    step, outs[1][0], outs[2][0]))
W
WangXi 已提交
105 106 107


if __name__ == '__main__':
108 109 110 111 112 113 114 115
    try:
        check(use_cuda=False)
        assert False
    except Exception as e:
        print(e)
        print(type(e))
        assert type(e) == RuntimeError

W
WangXi 已提交
116 117 118 119 120 121
    if core.is_compiled_with_cuda():
        try:
            check(use_cuda=True)
            assert False
        except Exception as e:
            print(e)
122 123 124
            print(type(e))
            # Note. Enforce in cuda kernel may not catch in paddle, and
            # Exception type will be RuntimeError
125
            assert type(e) == OSError or type(e) == RuntimeError