io.py 36.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import collections
import pickle
import six
import warnings
22
import sys
W
WeiXin 已提交
23
import numpy as np
24

25 26 27
if not six.PY2:
    import copyreg

28 29 30 31 32
import paddle

# deprecated module import
from paddle import fluid
from paddle.fluid import core
33 34 35
from paddle.fluid.io import _unpack_saved_dict, _pack_loaded_dict, _pickle_loads_mac
from paddle.fluid.io import _legacy_save as _legacy_static_save

W
WeiXin 已提交
36
from paddle.fluid.framework import Variable, _varbase_creator, _dygraph_tracer, in_dygraph_mode, ParamBase, _current_expected_place, Program
37 38 39
from paddle.fluid.dygraph.jit import _SaveLoadConfig
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
40

41 42
__all__ = []

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

def _build_saved_state_dict(state_dict):
    save_dict = {}
    name_table = {}
    for key, value in state_dict.items():
        if isinstance(value, (Variable, core.VarBase)):
            save_dict[key] = value.numpy()
            name_table[key] = value.name
        else:
            save_dict[key] = value
    save_dict["StructuredToParameterName@@"] = name_table

    return save_dict


def _load_state_dict_from_save_inference_model(model_path, config):
    # 1. load program desc & construct _ProgramHolder
    programs = _construct_program_holders(model_path, config.model_filename)

    # 2. load layer parameters & buffers
    with fluid.dygraph.guard():
        persistable_var_dict = _construct_params_and_buffers(
65
            model_path, programs, config.params_filename, append_suffix=False)
66 67 68 69 70 71

        # 3. construct state_dict
        load_param_dict = dict()
        for var_name in persistable_var_dict:
            load_param_dict[var_name] = persistable_var_dict[var_name].numpy()

72 73 74
        # if *.info exists, we can recover structured_name
        var_info_filename = str(config.params_filename) + ".info"
        var_info_path = os.path.join(model_path, var_info_filename)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        if os.path.exists(var_info_path):
            with open(var_info_path, 'rb') as f:
                extra_var_info = pickle.load(f)
            structured_para_dict = dict()
            for var_name in load_param_dict:
                structured_name = extra_var_info[var_name].get(
                    'structured_name', None)
                assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
                structured_para_dict[structured_name] = load_param_dict[
                    var_name]
            load_param_dict = structured_para_dict

    return load_param_dict


def _load_state_dict_from_save_params(model_path):
    # Try to load all the files in the directory in VarBase format, 
    # the file name is used as the name of VarBase
    load_var_list = []

    # 1. load file names
    var_name_list = []
    for root, _, files in os.walk(model_path):
        for filename in files:
            file_path = os.path.join(root, filename)
            tmp_var_name = os.path.relpath(file_path, model_path)
            var_name = tmp_var_name.replace("\\", "/")
            var_name_list.append(var_name)

    # 2. create and load VarBase
    with fluid.dygraph.guard():
        for name in var_name_list:
            new_var = _varbase_creator(name=name, persistable=True)
            _dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, name)})
            load_var_list.append(new_var)

    # 3. construct state_dict
    load_param_dict = dict()
    for var in load_var_list:
        load_param_dict[var.name] = var.numpy()

    return load_param_dict


123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
# NOTE(chenweihang): [ Handling of use cases of API paddle.load ]
# `paddle.load` may be used to load saved results of:
# 1. Expected cases:
#   - need [full filename] when loading
#       - paddle.save
#       - paddle.static.save
#       - paddle.fluid.save_dygraph
#   - need [prefix] when loading [compatible for paddle 2.x]
#       - paddle.jit.save
#       - paddle.static.save_inference_model
#   - need [directory] when loading [compatible for paddle 1.x]
#       - paddle.fluid.io.save_inference_model
#       - paddle.fluid.io.save_params/save_persistable
# 2. Error cases:
#   - no error case
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        error_msg = "The ``path`` (%s) to load model not exists."
        # if current path is a prefix, and the path.pdparams or path.pdopt
        # is exist, users may want use `paddle.load` load the result of 
        # `fluid.save_dygraph`, we raise error here for users
        params_file_path = path + ".pdparams"
        opti_file_path = path + ".pdopt"
        if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
            error_msg += " If you want to load the results saved by `fluid.save_dygraph`, " \
                "please specify the full file name, not just the file name prefix. For " \
                "example, it should be written as `paddle.load('model.pdparams')` instead of " \
                "`paddle.load('model')`."
        raise ValueError(error_msg % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path

    return model_path, config


def _parse_load_config(configs):
186 187 188
    supported_configs = [
        'model_filename', 'params_filename', 'keep_name_table', 'return_numpy'
    ]
189 190 191 192 193 194 195 196 197 198 199 200 201

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.load` is not supported."
                % key)

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)
202
    inner_config.return_numpy = configs.get('return_numpy', False)
203 204 205 206

    return inner_config


207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
def _parse_save_config(configs):
    supported_configs = ['use_binary_format', 'pickle_protocol']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.save` is not supported."
                % key)

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.use_binary_format = configs.get('use_binary_format', False)
    inner_config.pickle_protocol = configs.get('pickle_protocol', None)

    return inner_config


def _pickle_save(obj, f, protocol):
    # TODO(weixin):add support for BytesIO.
    if not isinstance(protocol, int):
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
            type(protocol)))

    if protocol < 2 or protocol > 4:
        raise ValueError("Expected 1<'protocol'<5, but received protocol={}".
                         format(protocol))

    def reudce_varbase(self):
        data = self.numpy()
        name = self.name

        return (tuple, ((name, data), ))

    def reduce_LoDTensor(self):
        data = np.array(self)

        return (eval, ('data', {'data': data}))

    def add_dispatch_table():
        # This is not a good method, because the pickle module has been modified.
        pickle.dispatch_table[core.VarBase] = reudce_varbase
        pickle.dispatch_table[ParamBase] = reudce_varbase
        pickle.dispatch_table[core.LoDTensor] = reduce_LoDTensor

    def pop_dispatch_table():
        pickle.dispatch_table.pop(core.VarBase)
        pickle.dispatch_table.pop(core.LoDTensor)
        pickle.dispatch_table.pop(ParamBase)

    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
    if sys.platform == 'darwin' and sys.version_info.major == 3:
        add_dispatch_table()
        pickle_bytes = pickle.dumps(obj)
        pop_dispatch_table()

        max_bytes = 2**30
        for i in range(0, len(pickle_bytes), max_bytes):
            f.write(pickle_bytes[i:i + max_bytes])
    else:
        if six.PY2:
            add_dispatch_table()
            pickle_bytes = pickle.dump(obj, f, protocol)
            pop_dispatch_table()
        else:
            pickler = pickle.Pickler(f, protocol)
            pickler.dispatch_table = copyreg.dispatch_table.copy()

            pickler.dispatch_table[core.VarBase] = reudce_varbase
            pickler.dispatch_table[core.LoDTensor] = reduce_LoDTensor
            pickler.dispatch_table[ParamBase] = reudce_varbase

            pickler.dump(obj)


282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
def _contain_x(obj, condition_func):
    if isinstance(obj, core.SelectedRows):
        raise NotImplementedError(
            "`paddle.save` do not support saving 'SelectedRows'.")

    if condition_func(obj):
        return True
    elif type(obj) in (dict, collections.OrderedDict, list, tuple):
        if type(obj) in (dict, collections.OrderedDict):
            keys = list(obj.keys())
        else:
            keys = range(len(obj))
        flag = False
        for key in keys:
            flag |= _contain_x(obj[key], condition_func)
            if flag:
                return True
        return flag
    else:
301
        return False
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323


def _is_state_dict(obj):
    if isinstance(obj, dict):

        def condition(obj):
            return isinstance(obj, (core.Layer, Program, core.VarBase,
                                    core.LoDTensor, core.SelectedRows))

        # If the value of a dict is a core.VarBase/LoDTensor or a dict 
        # that does not contain a paddle type(Layer, Program, VarBase, LoDTensor, SelectedRows), 
        # the dict is considered to be a state_ dict.
        for key, value in obj.items():
            if isinstance(value, dict):
                for k, v in value.items():
                    if _contain_x(v, condition):
                        return False
            elif not isinstance(value, (core.VarBase, core.LoDTensor)):
                return False
        return True

    return False
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379


def _transformed_from_varbase(obj):
    # In paddle2.1 version, VarBase is saved as tuple(tensor.name, tensor.numpy()).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, tuple) and len(obj) == 2:
        if six.PY2:
            name_types = (str, unicode)
        else:
            name_types = str
        if isinstance(obj[0], name_types) and isinstance(obj[1], np.ndarray):
            return True
    return False


def _transformed_from_lodtensor(obj):
    # In paddle2.1 version, LoDTensor is saved as np.array(tensor).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, np.ndarray):
        return True
    return False


def _to_LodTensor(ndarray):
    if not isinstance(ndarray, np.ndarray):
        raise TypeError(
            'Type of `ndarray` should be numpy.ndarray, but received {}.'.
            format(type(ndarray)))
    t = core.LoDTensor()
    place = _current_expected_place()
    t.set(ndarray, place)
    return t


def _tuple_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj[1]
    if in_dygraph_mode():
        t = paddle.to_tensor(obj[1])
        # This function does modify the name of return value.
        # Loading the same variable multiple times may cause the same name.
        t.name = obj[0]
        return t
    else:
        return _to_LodTensor(obj[1])


def _ndarray_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj
    if in_dygraph_mode():
        return paddle.to_tensor(obj)
    else:
        return _to_LodTensor(obj)


380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
def _lod_tensor2varbase(tensor):
    return_var = _varbase_creator()
    return_var.value().get_tensor().set(tensor, _current_expected_place())
    return return_var


def _parse_every_object(obj, condition_func, convert_func):
    if condition_func(obj):
        return convert_func(obj)
    elif type(obj) in (dict, collections.OrderedDict, list):
        if type(obj) == list:
            keys = range(len(obj))
        else:
            keys = list(obj.keys())
        for key in keys:
            if condition_func(obj[key]):
                obj[key] = convert_func(obj[key])
            else:
                obj[key] = _parse_every_object(obj[key], condition_func,
                                               convert_func)
        return obj
    elif type(obj) == tuple:
        return tuple(
            _parse_every_object(list(obj), condition_func, convert_func))
    elif type(obj) == set:
        return set(_parse_every_object(list(obj), condition_func, convert_func))
    else:
        if isinstance(obj, collections.Iterable) and not isinstance(obj, (
                str, np.ndarray, core.VarBase, core.LoDTensor)):
            raise NotImplementedError(
                "The iteratable objects supported are tuple, list, dict, OrderedDict, string. But received {}.".
                format(type(obj)))
        return obj


def _parse_load_result(obj, return_numpy):
    def is_layer(obj):
        return isinstance(obj, core.Layer)

    def parse_layer(obj):
        temp_dict = _parse_load_result(obj.__dict__, False)
        obj.__dict__.update(temp_dict)
        return obj

    if _contain_x(obj, is_layer):
        if not in_dygraph_mode():
            raise ValueError(
                "Layer can only be loaded in dynamic graph mode, but now in static graph mode."
            )

        _parse_every_object(obj, is_layer, parse_layer)

    def tuple_to_tensor(obj):
        return _tuple_to_tensor(obj, return_numpy=return_numpy)

    def ndarray_to_tensor(obj):
        return _ndarray_to_tensor(obj, return_numpy=return_numpy)

    # tuple(name, ndarry) was converted from varbase of paddle2.1, 
    # and all tuple(name, ndarry) are converted to tensor.
    if _contain_x(obj, _transformed_from_varbase):
        return _parse_every_object(obj, _transformed_from_varbase,
                                   tuple_to_tensor)
    # If there is no tuple(name, ndary), it is considered to be saved by paddle2.0 
    # or converted from LoDTensor, and all ndarrays are converted to tensor.
    else:
        return _parse_every_object(obj, _transformed_from_lodtensor,
                                   ndarray_to_tensor)


450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
def _save_lod_tensor(tensor, file_name):
    if not tensor._is_initialized():
        raise ValueError("The saved tensor is not initialized.")
    _seek = core._save_lod_tensor(tensor, file_name)
    # '_seek' is the end position of this tensor in the file.
    return _seek


def _load_lod_tensor(file_name):
    temp_t = paddle.fluid.core.LoDTensor()
    # '_seek' is the end position of this tensor in the file.
    _seek = paddle.fluid.core._load_lod_tensor(temp_t, file_name)
    return temp_t, _seek


def _save_selected_rows(selected_rows, file_name):
    # '_seek' is the end position of this SelectedRows in the file.
    if not selected_rows.get_tensor()._is_initialized():
        raise ValueError("The saved tensor is not initialized.")
    _seek = core._save_selected_rows(selected_rows, file_name)
    return _seek


def _load_selected_rows(file_name):
    temp_sr = core.SelectedRows()
    # '_seek' is the end position of this SelectedRows in the file.
    _seek = core._load_selected_rows(temp_sr, file_name)
    return temp_sr, _seek


def _save_binary_var(obj, path):
    if isinstance(obj, core.LoDTensor):
        _save_lod_tensor(obj, path)
    elif isinstance(obj, core.SelectedRows):
        _save_selected_rows(obj, path)
485 486
    elif isinstance(obj, core.VarBase):
        _save_lod_tensor(obj.value().get_tensor(), path)
487 488 489 490 491 492 493
    else:
        # Since the concept of 'Tensor' is only exposed to users, the error message can only contain tensor instead of 'LoDTensor' or 'SelectedRows'
        raise NotImplementedError(
            "When use_binary_format = True, `paddle.save`  expected Tensor, but received {}.".
            format(type(obj)))


494
def save(obj, path, protocol=2, **configs):
495 496 497 498
    '''
    Save an object to the specified path.
    
    .. note::
499
        Now supports saving ``state_dict`` of Layer/Optimizer, Layer, Tensor and nested structure containing Tensor, Program.
500 501

    .. note::
502 503 504 505 506 507 508
        Different from ``paddle.jit.save``, since the save result of ``paddle.save`` is a single file, 
        there is no need to distinguish multiple saved files by adding a suffix. The argument ``path`` 
        of ``paddle.save`` will be directly used as the saved file name instead of a prefix. 
        In order to unify the saved file name format, we recommend using the paddle standard suffix:
        1. for ``Layer.state_dict`` , recommend to use ``.pdparams`` ; 
        2. for ``Optimizer.state_dict`` , recommend to use ``.pdopt`` . 
        For specific examples, please refer to API code examples.
509 510 511 512 513
    
    Args:
        obj(Object) : The object to be saved.
        path(str) : The path of the object to be saved. 
          If saved in the current directory, the input path string will be used as the file name. 
514
        protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
W
WeiXin 已提交
515
                                 Default: 2
516 517 518 519
        **configs(dict, optional): optional keyword arguments. The following options are currently supported:
          use_binary_format(bool): When the saved object is static graph variable, you can specify ``use_binary_for_var``. 
          If True, save the file in the c++ binary format when saving a single static graph variable; otherwise, save it in pickle format.
          Default: False
520 521 522 523 524 525 526

    Returns:
        None

    Examples:
        .. code-block:: python

527
            # example 1: dynamic graph
528 529 530
            import paddle
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
531 532

            # save state_dict of emb
533
            paddle.save(layer_state_dict, "emb.pdparams")
534 535

            scheduler = paddle.optimizer.lr.NoamDecay(
536 537 538 539 540
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
541 542

            # save state_dict of optimizer
543
            paddle.save(opt_state_dict, "adam.pdopt")
544 545 546
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")

547 548 549 550 551 552 553 554 555 556 557 558
            # example 2: Save multiple state_dict at the same time
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)


            # example 3: static graph
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
574
                    tensor = var.get_value()
575 576 577 578 579 580 581 582 583
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
584 585 586 587 588 589 590 591 592 593 594 595

            # example 4: save program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
596
    '''
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
    # 1. input check
    filename = os.path.basename(path)
    if filename == "":
        raise ValueError("The input path MUST be format of dirname/filename "
                         "[dirname\\filename in Windows system], but received "
                         "filename is empty string.")

    # 2. save object
    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)

    config = _parse_save_config(configs)

    if not isinstance(config.use_binary_format, bool):
        raise TypeError(
            "Type of `use_binary_format` should be bool, but received {}.".
            format(type(config.use_binary_format)))

616 617
    if config.use_binary_format:
        _save_binary_var(obj, path)
618
    else:
619 620 621 622 623 624
        # `protocol` need to be used, `pickle_protocol` is a deprecated arg.
        if config.pickle_protocol is not None:
            protocol = config.pickle_protocol
            warnings.warn(
                "'pickle_protocol' is a deprecated argument. Please use 'protocol' instead."
            )
625

626 627 628 629
        if isinstance(obj, Program):
            obj.desc.flush()
            with open(path, "wb") as f:
                f.write(obj.desc.serialize_to_string())
630 631

        elif _is_state_dict(obj):
632 633 634 635 636
            if in_dygraph_mode():
                _legacy_save(obj, path, protocol)
            else:
                _legacy_static_save(obj, path, protocol)
        else:
637 638
            with open(path, 'wb') as f:
                _pickle_save(obj, f, protocol)
639

640 641

def _legacy_save(obj, path, protocol=2):
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    # 1. input check
    if not isinstance(obj, dict):
        raise NotImplementedError(
            "Now only supports save state_dict of Layer or Optimizer, "
            "expect dict, but received %s." % type(obj))

    if len(obj) == 0:
        warnings.warn("The input state dict is empty, no need to save.")

    filename = os.path.basename(path)
    if filename == "":
        raise ValueError("The input path MUST be format of dirname/filename "
                         "[dirname\\filename in Windows system], but received "
                         "filename is empty string.")

657
    if not isinstance(protocol, int):
W
WeiXin 已提交
658
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
659
            type(protocol)))
W
WeiXin 已提交
660

661
    if protocol < 2 or protocol > 4:
W
WeiXin 已提交
662
        raise ValueError("Expected 1<'protocol'<5, but received protocol={}".
663
                         format(protocol))
W
WeiXin 已提交
664

665 666 667 668 669 670
    # 2. save object
    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)

    # TODO(chenweihang): supports save other object
W
WeiXin 已提交
671 672 673
    if isinstance(obj, dict):
        saved_obj = _build_saved_state_dict(obj)

674
    saved_obj = _unpack_saved_dict(saved_obj, protocol)
675

676 677 678
    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
    if sys.platform == 'darwin' and sys.version_info.major == 3:
        pickle_bytes = pickle.dumps(saved_obj, protocol=protocol)
679 680 681 682 683 684
        with open(path, 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
        with open(path, 'wb') as f:
685
            pickle.dump(saved_obj, f, protocol=protocol)
686 687


688
def load(path, **configs):
689 690 691 692
    '''
    Load an object can be used in paddle from specified path.

    .. note::
693
        Now supports loading ``state_dict`` of Layer/Optimizer, Layer, Tensor and nested structure containing Tensor, Program.
694 695

    .. note::
696 697 698 699
        In order to use the model parameters saved by paddle more efficiently, 
        ``paddle.load`` supports loading ``state_dict`` of Layer from the result of 
        other save APIs except ``paddle.save`` , but the argument ``path`` format is 
        different:
700 701 702 703 704 705 706 707 708 709 710 711
        1. loading from ``paddle.static.save`` or ``paddle.Model().save(training=True)`` ,  
        ``path`` needs to be a complete file name, such as ``model.pdparams`` or 
        ``model.pdopt`` ; 
        2. loading from ``paddle.jit.save`` or ``paddle.static.save_inference_model`` 
        or ``paddle.Model().save(training=False)`` , ``path`` need to be a file prefix, 
        such as ``model/mnist``, and ``paddle.load`` will get information from 
        ``mnist.pdmodel`` and ``mnist.pdiparams`` ;
        3. loading from paddle 1.x APIs ``paddle.fluid.io.save_inference_model`` or 
        ``paddle.fluid.io.save_params/save_persistables`` , ``path`` need to be a 
        directory, such as ``model`` and model is a directory.

    .. note::
712
        If you load ``state_dict`` from the saved result of static mode API such as 
713
        ``paddle.static.save`` or ``paddle.static.save_inference_model`` , 
714 715 716
        the structured variable name in dynamic mode will cannot be restored. 
        You need to set the argument ``use_structured_name=False`` when using 
        ``Layer.set_state_dict`` later.
717 718 719

    Args:
        path(str) : The path to load the target object. Generally, the path is the target 
720 721
            file path. When loading state_dict from the saved result of the API used to save 
            the inference model, the path may be a file prefix or directory.
722 723 724 725
        **configs (dict, optional): other load configuration options for compatibility. We do not 
            recommend using these configurations, they may be removed in the future. If not necessary, 
            DO NOT use them. Default None.
            The following options are currently supported:
726
            (1) model_filename (str): The inference model file name of the paddle 1.x 
727
            ``save_inference_model`` save format. Default file name is :code:`__model__` . 
728
            (2) params_filename (str): The persistable variables file name of the paddle 1.x 
729
            ``save_inference_model`` save format. No default file name, save variables separately 
730 731 732
            by default.            
            (3) return_numpy(bool): If specified as True, return tensor as numpy.ndarray, otherwise return tensor as paddle.Tensor. 
            Default False.
733 734 735 736 737 738 739

    Returns:
        Object(Object): a target object can be used in paddle

    Examples:
        .. code-block:: python

740 741
            # example 1: dynamic graph
            import paddle
742 743
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
744 745

            # save state_dict of emb
746
            paddle.save(layer_state_dict, "emb.pdparams")
747 748

            scheduler = paddle.optimizer.lr.NoamDecay(
749 750 751 752 753
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
754 755

            # save state_dict of optimizer
756
            paddle.save(opt_state_dict, "adam.pdopt")
757 758
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")
759

760
            # load state_dict of emb
761
            load_layer_state_dict = paddle.load("emb.pdparams")
762
            # load state_dict of optimizer
763
            load_opt_state_dict = paddle.load("adam.pdopt")
764 765 766 767
            # load weight of emb
            load_weight = paddle.load("emb.weight.pdtensor")


768 769 770 771 772 773 774 775 776 777 778 779 780
            # example 2: Load multiple state_dict at the same time
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)
            obj_load = paddle.load(path)


            # example 3: static graph
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
796
                    tensor = var.get_value()
797 798 799 800 801 802 803 804 805 806 807 808
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)
            load_tensor = paddle.load(path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
            load_state_dict = paddle.load(path_tensor)

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

            # example 4: load program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
            load_main = paddle.load(path)
            print(load_main)


825
    '''
826 827 828

    if os.path.isfile(path):
        config = _parse_load_config(configs)
W
WeiXin 已提交
829 830 831 832 833 834 835 836 837 838 839 840
        if six.PY2:
            exception_type = KeyError
        else:
            exception_type = pickle.UnpicklingError
        try:
            with open(path, 'rb') as f:
                # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
                if sys.platform == 'darwin' and sys.version_info.major == 3:
                    load_result = _pickle_loads_mac(path, f)
                else:
                    load_result = pickle.load(f) if six.PY2 else pickle.load(
                        f, encoding='latin1')
841

W
WeiXin 已提交
842 843
                # TODO(weixin):If `obj` is any object, the judgment condition should be more precise.
                if isinstance(load_result, dict):
844
                    load_result = _pack_loaded_dict(load_result)
W
WeiXin 已提交
845 846 847 848 849 850 851 852 853 854 855
                    # paddle2.0: paddle.save/load
                    if "StructuredToParameterName@@" in load_result:

                        for key in load_result["StructuredToParameterName@@"]:
                            load_result[key] = _ndarray_to_tensor(
                                load_result[key], config.return_numpy)

                        if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
                            del load_result["StructuredToParameterName@@"]
                    else:
                        # paddle2.1 static.save/load
856 857
                        load_result = _parse_load_result(load_result,
                                                         config.return_numpy)
858 859

                else:
860 861
                    load_result = _parse_load_result(load_result,
                                                     config.return_numpy)
862 863 864 865 866 867 868 869

        except exception_type as msg_pickle:
            try:
                tensor, _ = _load_selected_rows(path)
                return tensor
            except:
                try:
                    tensor, _ = _load_lod_tensor(path)
870 871 872 873 874 875
                    if config.return_numpy:
                        return np.array(tensor)
                    else:
                        if in_dygraph_mode():
                            return _lod_tensor2varbase(tensor)
                        return tensor
876 877 878 879 880 881 882 883 884 885 886
                except:
                    try:
                        with open(path, "rb") as f:
                            program_desc_str = f.read()
                            program = Program.parse_from_string(
                                program_desc_str)
                            return program
                    except:
                        raise ValueError(
                            "`paddle.load` can not parse the file:{}.".format(
                                path))
887 888 889 890 891 892 893 894

    else:
        load_result = _legacy_load(path, **configs)

    return load_result


def _legacy_load(path, **configs):
895
    load_result = None
896 897
    config = _parse_load_config(configs)

898 899 900 901 902
    if os.path.isfile(path):
        # we think path is file means this file is created by paddle.save
        with open(path, 'rb') as f:
            load_result = pickle.load(f) if six.PY2 else pickle.load(
                f, encoding='latin1')
903
        load_result = _pack_loaded_dict(load_result)
904 905
        if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
            del load_result["StructuredToParameterName@@"]
906 907 908
    else:
        # file prefix and directory are compatible cases
        model_path, config = _build_load_path_and_config(path, config)
909 910 911 912 913
        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
914
        model_file_path = os.path.join(model_path, model_filename)
915 916 917 918 919 920 921 922 923

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
            # The model saved by `save_inference_model` does not completely correspond to 
            # the information required by the `state_dict` under the dygraph. 
            # `save_inference_model` not save structured name, we need to remind 
            # the user to configure the `use_structured_name` argument when `set_state_dict`
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state 
924
            load_result = _load_state_dict_from_save_inference_model(model_path,
925 926 927 928 929 930 931 932
                                                                     config)
        else:
            # load state dict by `io.save_params/persistables` save format
            # TODO(chenweihang): [ Now only supports loading parameters seperately ]
            # If users save all parameters as one file, the [ variable.name -> variable ]
            # mapping info will lost, so users need to give variable list, but users build 
            # variable list in dygraph mode is difficult, we recommend users to use
            # paddle.static.load_program_state in this case
933
            load_result = _load_state_dict_from_save_params(model_path)
934 935

    return load_result