fc_mkldnn_op.cc 27.2 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
W
wanghuancoder 已提交
19

20 21 22 23
namespace pten {
class DenseTensor;
}  // namespace pten

W
wanghuancoder 已提交
24
namespace paddle {
25
namespace framework {}  // namespace framework
W
wanghuancoder 已提交
26 27 28 29
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle
M
mozga-intel 已提交
30 31 32 33

namespace paddle {
namespace operators {

34 35 36 37 38 39 40 41
using framework::DataLayout;
using framework::Tensor;
using framework::LoDTensor;
using framework::DDim;
using framework::ExecutionContext;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;
42 43 44 45 46
using dnnl::memory;
using dnnl::inner_product_forward;
using dnnl::primitive;
using dnnl::stream;
using dnnl::prop_kind;
M
mozga-intel 已提交
47

M
Michał Gallus 已提交
48
template <typename T_in, typename T_w, typename T_out>
49
class FCPrimitiveFactory {
M
mozga-intel 已提交
50
 public:
51
  explicit FCPrimitiveFactory(const dnnl::engine& engine) : engine_(engine) {}
52

A
Adam 已提交
53 54
  void ExecuteFcPrimitive(const LoDTensor* input, const Tensor* weights,
                          const Tensor* bias, LoDTensor* output,
55
                          const MKLDNNDeviceContext& dev_ctx,
A
Adam 已提交
56
                          const ExecutionContext& ctx) {
57
    RecomputeOutputDims(ctx, input, weights, output);
M
Michał Gallus 已提交
58 59
    // If primitive has already been created and cached, don't create new one,
    // but update input and output data pointers and return it.
60 61
    if (fc_) {
      UpdateDataPointers(ctx, output, input);
A
Adam 已提交
62 63
      this->Execute();
      return;
64
    }  // Otherwise, create a new one.
M
mozga-intel 已提交
65

66
    auto in_col_dims = ctx.Attr<int>("in_num_col_dims");
T
tianshuo78520a 已提交
67 68 69 70 71 72
    PADDLE_ENFORCE_LE(
        in_col_dims, 2,
        platform::errors::Unimplemented(
            "DNNL FC doesn't support in_num_col_dims parameter to "
            "be higher than "
            "2."));
73 74 75 76 77 78 79 80 81 82 83 84 85
    if (in_col_dims == 2) {
      PADDLE_ENFORCE_EQ(
          input->dims().size(), 3,
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "3 dim input is provided."));
      PADDLE_ENFORCE_EQ(
          input->format(), MKLDNNMemoryFormat::ncw,
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "input format is equal to ncw."));
    }

86 87
    weights_ = CreateWeightsMemory(weights);

88 89 90 91 92
    // Since MKL-DNN has a lot of limitations on what the input/weights/output
    // dimensions should be, to simplify the code, the creation of primitive
    // descriptor has been divided into separate cases, based on the number
    // of input dimensions.
    size_t input_dim_num = input->dims().size();
93
    paddle::optional<dnnl::inner_product_forward::primitive_desc> fc_prim_desc;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    memory::desc usr_weights_desc = {};
    switch (input_dim_num) {
      case 2:
        fc_prim_desc =
            Create2DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create2DUserWeightsDesc();
        break;
      case 3:
        fc_prim_desc =
            Create3DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create3DUserWeightsDesc(weights);
        break;
      case 4:
        fc_prim_desc =
            Create4DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create4DUserWeightsDesc(input, weights);
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "DNNL FC doesn't support input dims different than 2, 3, 4."));
        break;
115
    }
116 117 118 119
    input_ = CreateMemory<T_in>(fc_prim_desc->src_desc(), input);
    // Update weights format inside of its memory
    weights_ = Reorder(usr_weights_desc, usr_weights_desc,
                       weights_->get_data_handle());
120

121 122 123
    // Quantize weights and reorder to format chosen by FC primitive descriptor.
    QuantizeWeights(ctx, fc_prim_desc->weights_desc());

124
    bias_ = CreateMemoryToBeCached<float>(fc_prim_desc->bias_desc(), bias);
125 126
    // If int8 is desired, quantize bias into 32-bit signed int
    QuantizeBias(*fc_prim_desc, ctx);
M
mozga-intel 已提交
127

128 129 130
    // Store weights and bias in the mkldnn cache
    CacheWeightsAndBias(dev_ctx, ctx);

131 132 133 134 135 136
    // Based on format determined by inner_product, create output in desired
    // memory format
    output_ = CreateDstMemory(*fc_prim_desc, ctx, output);

    // Return MKL-DNN primitive ready to be fed into pipeline and executed
    fc_ = inner_product_forward(*fc_prim_desc);
A
Adam 已提交
137 138 139 140
    this->Execute();
  }

  void Execute() {
141
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
142
    if (bias_) {
143 144 145 146
      fc_->execute(astream, {{DNNL_ARG_SRC, *input_},
                             {DNNL_ARG_WEIGHTS, *weights_},
                             {DNNL_ARG_BIAS, *bias_},
                             {DNNL_ARG_DST, *output_}});
A
Adam 已提交
147
    } else {
148 149 150
      fc_->execute(astream, {{DNNL_ARG_SRC, *input_},
                             {DNNL_ARG_WEIGHTS, *weights_},
                             {DNNL_ARG_DST, *output_}});
A
Adam 已提交
151 152
    }
    astream.wait();
M
mozga-intel 已提交
153 154
  }

155
 private:
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  // DNNL always returns 2-dimensional data block as a result of computing
  // inner product. Hence the format 'nc' is always set for its output
  // primitive. Therefore, function SetOutputFormat is needed to choose
  // an appropriate format based on the number of input dimensions and
  // format of an input tensor.
  void SetOutputFormat(MKLDNNMemoryFormat in_format, Tensor* out) {
    int dim_num = out->dims().size();
    // In case of 2 dims, we set the only possible format, nc
    if (dim_num == 2) {
      out->set_format(MKLDNNMemoryFormat::nc);
      // In case of 3 dims, we generate a format that is based on number
      // of output dims and the layout of input format (nchw or nhwc).
    } else if (dim_num == 3) {
      if (in_format == MKLDNNMemoryFormat::nwc ||
          in_format == MKLDNNMemoryFormat::nhwc) {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nhwc));
      } else {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nchw));
      }
      // In any other case we overwrite the output format with the input one.
    } else {
      out->set_format(in_format);
    }
  }

183 184
  void UpdateDataPointers(const ExecutionContext& ctx, Tensor* out,
                          const Tensor* in) {
M
Michał Gallus 已提交
185 186 187 188 189
    input_->set_data_handle(to_void_cast(in->data<T_in>()));
    output_->set_data_handle(out->mutable_data<T_out>(ctx.GetPlace()));
    // If the primitive exists, but the output tensor has changed its
    // variable, update its format to what has been determined in first
    // call to CreateFcPrimitive method.
A
Adam 已提交
190
    if (out->format() == MKLDNNMemoryFormat::undef) {
191
      SetOutputFormat(in->format(), out);
192
    }
M
mozga-intel 已提交
193 194
  }

195
  dnnl::inner_product_forward::primitive_desc Create2DFcPrimDescriptor(
196 197 198 199 200 201 202 203 204 205 206 207 208
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    auto weight_dims = Get2DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get2DWeightDimsForDNNL(const Tensor* weights) {
209
    auto dims = pten::vectorize(weights->dims());
210 211 212 213 214 215
    std::swap(dims[0], dims[1]);  // swap input dim with output dim
    return dims;
  }

  memory::desc Create2DUserWeightsDesc() { return weights_->get_desc(); }

216
  dnnl::inner_product_forward::primitive_desc Create3DFcPrimDescriptor(
217 218
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
219
    auto input_dims = pten::vectorize(input->dims());
220 221
    std::vector<int64_t> new_input_dims = {input_dims[0] * input_dims[1],
                                           input_dims[2], 1};
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    auto src_desc = CreateMemDescriptor<T_in>(new_input_dims, input->format());

    auto weight_dims = Get3DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);

    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);

    auto dst_dims = {input_dims[0] * input_dims[1], weight_dims[0]};
    auto dst_desc =
        CreateMemDescriptor<T_out>(dst_dims, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get3DWeightDimsForDNNL(const Tensor* weights) {
238
    auto paddle_w_dims = pten::vectorize(weights->dims());
239
    return {paddle_w_dims[1], paddle_w_dims[0], 1};
240 241 242 243 244 245 246
  }

  memory::desc Create3DUserWeightsDesc(const Tensor* weights) {
    auto dims = Get3DWeightDimsForDNNL(weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oiw);
  }

247
  dnnl::inner_product_forward::primitive_desc Create4DFcPrimDescriptor(
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    // Since MKL-DNN doesn't support 4D column-major data formats in
    // inner_product primitive, transpose the weights to be in
    // row-major format
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    auto weights_desc = CreateMemDescriptor<T_w>(dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get4DWeightDimsForDNNL(const LoDTensor* input,
                                              const Tensor* weights) {
264 265
    auto old_w_dims = pten::vectorize(weights->dims());
    auto old_in_dims = pten::vectorize(input->dims());
266 267 268 269 270 271 272 273
    auto dims = {old_w_dims[1], old_in_dims[1], old_in_dims[2], old_in_dims[3]};
    return dims;
  }

  memory::desc Create4DUserWeightsDesc(const LoDTensor* input,
                                       const Tensor* weights) {
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oihw);
M
mozga-intel 已提交
274 275
  }

M
Michał Gallus 已提交
276
  // Convert data from one data format to another
277 278 279
  std::shared_ptr<dnnl::memory> Reorder(const memory::desc& src_desc,
                                        const memory::desc& dst_desc,
                                        void* src_data) {
A
Adam 已提交
280
    auto src_mem = memory(src_desc, engine_, src_data);
281
    auto dst_mem = std::make_shared<memory>(dst_desc, engine_);
M
mozga-intel 已提交
282

283
    auto reorder = dnnl::reorder(src_mem, *dst_mem);
284
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
285 286

    {
C
chenjian 已提交
287 288 289
      platform::RecordEvent record_reorder(
          "int_reorder", platform::TracerEventType::UserDefined, 2,
          platform::EventRole::kUniqueOp);
290 291 292
      reorder.execute(astream, src_mem, *dst_mem);
      astream.wait();
    }
M
mozga-intel 已提交
293

294
    return dst_mem;
M
mozga-intel 已提交
295 296
  }

M
Michał Gallus 已提交
297 298
  // Convert data from one data format to another and rescale it.
  // If the desired data type is (un)signed int8, quantization occurs here.
299
  std::shared_ptr<dnnl::memory> ReorderWithScale(
300 301
      const std::shared_ptr<memory> src_mem, const memory::desc& dst_md,
      const std::vector<float>& scale_data) {
302 303
    auto dst_mem = std::make_shared<dnnl::memory>(dst_md, engine_);
    dnnl::primitive_attr attributes;
M
Michał Gallus 已提交
304 305 306 307 308 309 310 311
    // According to MKL-DNN's documentation mask determines along which
    // dimensions should the scale be applied.
    // 0 - Single scale applied to whole tensor
    // 1 - Apply Scale along a slice of each dimension which index is 1.
    //     In case of weights quantization, that dimension is output,
    //     becuase we perform per-output-channel quantization
    int mask = CreateMask(0, scale_data.size() > 1);
    attributes.set_output_scales(mask, scale_data);
312
    auto reorder = dnnl::reorder(*src_mem, *dst_mem, attributes);
M
Michał Gallus 已提交
313

314
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
315
    {
C
chenjian 已提交
316 317 318
      platform::RecordEvent record_reorder(
          "int_reorder", platform::TracerEventType::UserDefined, 2,
          platform::EventRole::kUniqueOp);
319
      reorder.execute(astream,
320
                      {{DNNL_ARG_FROM, *src_mem}, {DNNL_ARG_TO, *dst_mem}});
321 322
      astream.wait();
    }
M
Michał Gallus 已提交
323 324 325 326 327

    return dst_mem;
  }

  template <typename T>
328
  static dnnl::memory::desc CreateMemDescriptor(
A
Adam 已提交
329
      const std::vector<int64_t>& dims, MKLDNNMemoryFormat format) {
330 331
    return platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(),
                                   format);
M
mozga-intel 已提交
332 333
  }

M
Michał Gallus 已提交
334
  template <typename T>
335 336
  static dnnl::memory::desc CreateMemDescriptor(const Tensor* tensor,
                                                MKLDNNMemoryFormat format) {
337
    auto dims = pten::vectorize(tensor->dims());
M
Michał Gallus 已提交
338
    return CreateMemDescriptor<T>(dims, format);
M
mozga-intel 已提交
339 340
  }

M
Michał Gallus 已提交
341
  template <typename T>
342 343
  dnnl::memory CreateMemory(const dnnl::memory::desc& desc,
                            const Tensor* tensor) {
A
Adam 已提交
344
    return CreateMemory(desc, platform::to_void_cast<T>(tensor->data<T>()));
M
mozga-intel 已提交
345 346
  }

347
  dnnl::memory CreateMemory(const dnnl::memory::desc& desc, void* data) {
A
Adam 已提交
348
    return memory(desc, engine_, data);
M
mozga-intel 已提交
349 350
  }

351
  template <typename T>
352 353
  std::shared_ptr<dnnl::memory> CreateMemoryToBeCached(
      const dnnl::memory::desc& desc, const Tensor* tensor) {
354 355 356 357
    return CreateMemoryToBeCached(desc,
                                  platform::to_void_cast<T>(tensor->data<T>()));
  }

358 359
  std::shared_ptr<dnnl::memory> CreateMemoryToBeCached(
      const dnnl::memory::desc& desc, void* data) {
360 361 362 363
    return std::make_shared<memory>(desc, engine_, data);
  }

  // Create weights memory and transform to default MKL-DNN format
364
  std::shared_ptr<dnnl::memory> CreateWeightsMemory(const Tensor* weights) {
365
    auto dims = pten::vectorize(weights->dims());
366
    std::swap(dims[0], dims[1]);  // Correct output dimensions
M
Michał Gallus 已提交
367 368
    auto src_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oi);
369
    // Transpose weights through MKL-DNN's reorder from io to oi format.
A
Adam 已提交
370 371
    return Reorder(src_desc, dst_desc,
                   platform::to_void_cast<float>(weights->data<float>()));
M
Michał Gallus 已提交
372 373
  }

374 375
  void CacheWeightsAndBias(const MKLDNNDeviceContext& dev_ctx,
                           const ExecutionContext& ctx) {
376 377 378
    std::string key = platform::CreateKey(dev_ctx);
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

379 380 381 382 383 384
    const std::string weights_key = key + ctx.InputName("W");
    const std::string bias_key = key + ctx.InputName("Bias");
    dev_ctx.SetBlob(weights_key, weights_);
    dev_ctx.SetBlob(bias_key, bias_);
  }

M
Michał Gallus 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
  std::vector<float> ComputeBiasScales(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> bias_scales(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        bias_scales[i] = 1.0f;
      else
        bias_scales[i] = scale_in_data * scale_weights_data[i];
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
409 410
  std::tuple<std::vector<float>, float> ComputeOutputShiftScale(
      const ExecutionContext& ctx) {
M
Michał Gallus 已提交
411 412
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
413

M
Michał Gallus 已提交
414
    // If the output will be in floats, we don't multiply by scale_out.
415 416 417 418 419 420 421 422 423 424 425
    float activation_scale = 1.0f;
    float inner_scale = 1.0f;
    if (!ctx.Attr<bool>("force_fp32_output")) {
      // if has activation use it's scale, otherwise use inner scale.
      if (!ctx.Attr<std::string>("activation_type").empty()) {
        activation_scale = ctx.Attr<float>("Scale_out");
      } else {
        inner_scale = ctx.Attr<float>("Scale_out");
      }
    }

M
Michał Gallus 已提交
426 427 428 429 430 431
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
432
        output_shift_scale[i] = inner_scale;
M
Michał Gallus 已提交
433 434
      else
        output_shift_scale[i] =
435
            inner_scale / (scale_in_data * scale_weights_data[i]);
M
Michał Gallus 已提交
436 437
    }

438
    return make_tuple(output_shift_scale, activation_scale);
M
Michał Gallus 已提交
439 440 441 442 443 444 445 446 447 448
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

449
  void QuantizeWeights(const ExecutionContext& ctx, memory::desc dst) {
450 451
    weights_ = ReorderWithScale(weights_, dst,
                                ctx.Attr<std::vector<float>>("Scale_weights"));
M
Michał Gallus 已提交
452 453 454 455 456
  }

  void QuantizeBias(const inner_product_forward::primitive_desc& fc_prim_desc,
                    const ExecutionContext& ctx) {
    auto bias_scales = ComputeBiasScales(ctx);
457
    bias_ = ReorderWithScale(bias_, fc_prim_desc.bias_desc(), bias_scales);
M
Michał Gallus 已提交
458 459 460
  }

  // Fuse relu into FC with activation type attribute has been set to 'relu'
461 462 463
  dnnl::primitive_attr CreatePostOps(const ExecutionContext& ctx) {
    dnnl::primitive_attr attributes;
    dnnl::post_ops post_operations;
M
Michał Gallus 已提交
464

465 466 467
    std::vector<float> output_shift_scale;
    float scale;
    std::tie(output_shift_scale, scale) = ComputeOutputShiftScale(ctx);
M
Michał Gallus 已提交
468 469 470 471 472 473
    int mask = CreateMask(1, output_shift_scale.size() > 1);
    attributes.set_output_scales(mask, output_shift_scale);

    if (ctx.Attr<std::string>("activation_type") == "relu") {
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
474
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_relu,
M
Michał Gallus 已提交
475
                                     negative_slope, placeholder);
476 477 478
    } else if (ctx.Attr<std::string>("activation_type") == "gelu") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
479
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu,
480 481 482 483
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "gelu_tanh") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
484 485
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu_tanh,
                                     alpha, beta);
486 487 488
    } else if (ctx.Attr<std::string>("activation_type") == "gelu_erf") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
489
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu_erf,
490 491 492 493
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "tanh") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
494
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_tanh,
495 496 497 498
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "sigmoid") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
499
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_logistic,
500
                                     alpha, beta);
501 502 503 504 505
    } else if (ctx.Attr<std::string>("activation_type") == "mish") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_mish,
                                     alpha, beta);
J
jakpiase 已提交
506 507 508
    } else if (ctx.Attr<std::string>("activation_type") == "hard_swish") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
509 510
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_hardswish,
                                     alpha, beta);
M
Michał Gallus 已提交
511 512 513 514
    }

    attributes.set_post_ops(post_operations);
    return attributes;
515
  }
M
mozga-intel 已提交
516

517 518 519 520 521
  dnnl::inner_product_forward::primitive_desc CreateFcPrimDesc(
      const dnnl::memory::desc& input_desc,
      const dnnl::memory::desc& weights_desc,
      const dnnl::memory::desc& bias_desc, const dnnl::memory::desc& dst_desc,
      const dnnl::primitive_attr& attrs) {
522 523 524
    auto fc_desc =
        inner_product_forward::desc(prop_kind::forward_scoring, input_desc,
                                    weights_desc, bias_desc, dst_desc);
M
mozga-intel 已提交
525

M
Michał Gallus 已提交
526
    return inner_product_forward::primitive_desc(fc_desc, attrs, engine_);
527
  }
M
mozga-intel 已提交
528

M
Michał Gallus 已提交
529 530
  // Create output memory based on output tensor and inner_product
  // primitive descriptor format chosen for output
531 532
  dnnl::memory CreateDstMemory(
      const dnnl::inner_product_forward::primitive_desc& fc_prim_desc,
533
      const ExecutionContext& ctx, Tensor* output) {
A
Adam 已提交
534 535
    auto dst_desc = fc_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
M
Michał Gallus 已提交
536 537
    T_out* output_data =
        output->mutable_data<T_out>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
538
    memory dst_mem(dst_desc, engine_, to_void_cast<T_out>(output_data));
539
    SetOutputFormat(ctx.Input<LoDTensor>("Input")->format(), output);
540

A
Adam 已提交
541
    return dst_mem;
542
  }
M
mozga-intel 已提交
543

544 545
  void RecomputeOutputDims(const ExecutionContext& ctx, const LoDTensor* input,
                           const Tensor* w, LoDTensor* output) {
L
luotao1 已提交
546
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
547 548 549 550
    bool padding_weights = ctx.Attr<bool>("padding_weights");
    PADDLE_ENFORCE_EQ(padding_weights, false,
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
551
    std::vector<int64_t> output_dims;
552 553
    FCOutputSize(input->dims(), w->dims(), output_dims, in_num_col_dims,
                 padding_weights);
554
    output->Resize(pten::make_ddim(output_dims));
L
luotao1 已提交
555
    output->set_lod(input->lod());
556
  }
L
luotao1 已提交
557

558
 private:
559
  const dnnl::engine& engine_;
560 561
  paddle::optional<memory> input_;
  paddle::optional<memory> output_;
562 563
  std::shared_ptr<memory> bias_;
  std::shared_ptr<memory> weights_;
564
  paddle::optional<inner_product_forward> fc_;
565
};
M
mozga-intel 已提交
566

M
Michał Gallus 已提交
567 568 569 570 571 572
// Attempt to fetch cached primitive factory based on provided parameters
// of input format, weight dimensions and output name.
// If not cached, create a new one.
template <typename T_in, typename T_w, typename T_out>
static std::shared_ptr<FCPrimitiveFactory<T_in, T_w, T_out>>
GetPrimitiveFactory(const MKLDNNDeviceContext& dev_ctx,
573
                    const std::string& key) {
574
  auto prim_creator =
M
Michał Gallus 已提交
575 576
      std::static_pointer_cast<FCPrimitiveFactory<T_in, T_w, T_out>>(
          dev_ctx.GetBlob(key));
577
  if (prim_creator == nullptr) {
578 579
    prim_creator = std::make_shared<FCPrimitiveFactory<T_in, T_w, T_out>>(
        dev_ctx.GetEngine());
580
    dev_ctx.SetBlob(key, prim_creator);
M
mozga-intel 已提交
581 582
  }

583 584
  return prim_creator;
}
M
mozga-intel 已提交
585

M
Michał Gallus 已提交
586 587 588
// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename T_in, typename T_w>
589
static void ExecuteFc(const ExecutionContext& ctx, const LoDTensor* input,
A
Adam 已提交
590
                      const Tensor* w, const Tensor* bias, LoDTensor* output,
591 592
                      bool fuse_relu, bool force_fp32_output) {
  auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
593 594
  std::string prim_key = platform::CreateKey(
      dev_ctx, input->format(), input->dims()[0],
595
      pten::vectorize<int>(w->dims()), ctx.OutputName("Out"));
596 597
  prim_key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, prim_key);

M
Michał Gallus 已提交
598 599
  constexpr bool is_int8 =
      std::is_same<T_in, int8_t>::value || std::is_same<T_in, uint8_t>::value;
600 601
  bool is_bfloat16 = std::is_same<T_in, paddle::platform::bfloat16>::value;
  if ((!is_int8 && !is_bfloat16) || force_fp32_output) {
602 603
    GetPrimitiveFactory<T_in, T_w, float>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
604 605 606
  } else if (is_bfloat16) {
    GetPrimitiveFactory<T_in, T_w, platform::bfloat16>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
607
  } else if (fuse_relu) {
608 609
    GetPrimitiveFactory<T_in, T_w, uint8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
610
  } else {
611 612
    GetPrimitiveFactory<T_in, T_w, int8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
613 614 615 616 617
  }
}

template <typename T_in, typename T_w>
class FCMKLDNNOpKernel : public framework::OpKernel<T_in> {
M
mozga-intel 已提交
618 619
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
Michał Gallus 已提交
620 621 622
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("FC MKL-DNN must use CPUPlace."));
623
    platform::MKLDNNDeviceContext::tls().log_lib_version();
624 625
    auto input = ctx.Input<LoDTensor>("Input");
    auto w = ctx.Input<Tensor>("W");
T
tensor-tang 已提交
626
    auto bias = ctx.Input<Tensor>("Bias");
627
    auto output = ctx.Output<LoDTensor>("Out");
M
mozga-intel 已提交
628

M
Michał Gallus 已提交
629 630 631
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

632 633
    ExecuteFc<T_in, T_w>(ctx, input, w, bias, output, fuse_relu,
                         force_fp32_output);
M
mozga-intel 已提交
634

635
    output->set_layout(DataLayout::kMKLDNN);
M
mozga-intel 已提交
636 637 638 639 640
  }
};
}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
641 642 643 644 645 646 647 648
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    FP32, ops::kFCMKLDNNFP32,
                                    ops::FCMKLDNNOpKernel<float, float>);

649 650 651 652 653
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    fc, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kFCMKLDNNFP32,
    ops::FCMKLDNNOpKernel<paddle::platform::bfloat16,
                          paddle::platform::bfloat16>);

M
Michał Gallus 已提交
654 655 656 657 658 659 660
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    U8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<uint8_t, int8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    S8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<int8_t, int8_t>);