fc_mkldnn_op.cc 26.9 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace framework {
class LoDTensor;
class Tensor;
}  // namespace framework
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle
M
mozga-intel 已提交
29 30 31 32

namespace paddle {
namespace operators {

33 34 35 36 37 38 39 40 41 42 43 44 45
using framework::DataLayout;
using framework::Tensor;
using framework::LoDTensor;
using framework::DDim;
using framework::ExecutionContext;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;
using mkldnn::memory;
using mkldnn::inner_product_forward;
using mkldnn::primitive;
using mkldnn::stream;
using mkldnn::prop_kind;
M
mozga-intel 已提交
46

M
Michał Gallus 已提交
47
template <typename T_in, typename T_w, typename T_out>
48
class FCPrimitiveFactory {
M
mozga-intel 已提交
49
 public:
50 51
  explicit FCPrimitiveFactory(const mkldnn::engine& engine) : engine_(engine) {}

A
Adam 已提交
52 53
  void ExecuteFcPrimitive(const LoDTensor* input, const Tensor* weights,
                          const Tensor* bias, LoDTensor* output,
54
                          const MKLDNNDeviceContext& dev_ctx,
A
Adam 已提交
55
                          const ExecutionContext& ctx) {
56
    RecomputeOutputDims(ctx, input, weights, output);
M
Michał Gallus 已提交
57 58
    // If primitive has already been created and cached, don't create new one,
    // but update input and output data pointers and return it.
59 60
    if (fc_) {
      UpdateDataPointers(ctx, output, input);
A
Adam 已提交
61 62
      this->Execute();
      return;
63
    }  // Otherwise, create a new one.
M
mozga-intel 已提交
64

65
    auto in_col_dims = ctx.Attr<int>("in_num_col_dims");
T
tianshuo78520a 已提交
66 67 68 69 70 71
    PADDLE_ENFORCE_LE(
        in_col_dims, 2,
        platform::errors::Unimplemented(
            "DNNL FC doesn't support in_num_col_dims parameter to "
            "be higher than "
            "2."));
72 73 74 75 76 77 78 79 80 81 82 83 84
    if (in_col_dims == 2) {
      PADDLE_ENFORCE_EQ(
          input->dims().size(), 3,
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "3 dim input is provided."));
      PADDLE_ENFORCE_EQ(
          input->format(), MKLDNNMemoryFormat::ncw,
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "input format is equal to ncw."));
    }

85 86
    weights_ = CreateWeightsMemory(weights);

87 88 89 90 91
    // Since MKL-DNN has a lot of limitations on what the input/weights/output
    // dimensions should be, to simplify the code, the creation of primitive
    // descriptor has been divided into separate cases, based on the number
    // of input dimensions.
    size_t input_dim_num = input->dims().size();
92 93
    paddle::optional<mkldnn::inner_product_forward::primitive_desc>
        fc_prim_desc;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    memory::desc usr_weights_desc = {};
    switch (input_dim_num) {
      case 2:
        fc_prim_desc =
            Create2DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create2DUserWeightsDesc();
        break;
      case 3:
        fc_prim_desc =
            Create3DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create3DUserWeightsDesc(weights);
        break;
      case 4:
        fc_prim_desc =
            Create4DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create4DUserWeightsDesc(input, weights);
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "DNNL FC doesn't support input dims different than 2, 3, 4."));
        break;
115
    }
116 117 118 119
    input_ = CreateMemory<T_in>(fc_prim_desc->src_desc(), input);
    // Update weights format inside of its memory
    weights_ = Reorder(usr_weights_desc, usr_weights_desc,
                       weights_->get_data_handle());
120

121 122 123
    // Quantize weights and reorder to format chosen by FC primitive descriptor.
    QuantizeWeights(ctx, fc_prim_desc->weights_desc());

124
    bias_ = CreateMemoryToBeCached<float>(fc_prim_desc->bias_desc(), bias);
125 126
    // If int8 is desired, quantize bias into 32-bit signed int
    QuantizeBias(*fc_prim_desc, ctx);
M
mozga-intel 已提交
127

128 129 130
    // Store weights and bias in the mkldnn cache
    CacheWeightsAndBias(dev_ctx, ctx);

131 132 133 134 135 136
    // Based on format determined by inner_product, create output in desired
    // memory format
    output_ = CreateDstMemory(*fc_prim_desc, ctx, output);

    // Return MKL-DNN primitive ready to be fed into pipeline and executed
    fc_ = inner_product_forward(*fc_prim_desc);
A
Adam 已提交
137 138 139 140
    this->Execute();
  }

  void Execute() {
141
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
142 143 144 145 146 147 148 149 150 151 152
    if (bias_) {
      fc_->execute(astream, {{MKLDNN_ARG_SRC, *input_},
                             {MKLDNN_ARG_WEIGHTS, *weights_},
                             {MKLDNN_ARG_BIAS, *bias_},
                             {MKLDNN_ARG_DST, *output_}});
    } else {
      fc_->execute(astream, {{MKLDNN_ARG_SRC, *input_},
                             {MKLDNN_ARG_WEIGHTS, *weights_},
                             {MKLDNN_ARG_DST, *output_}});
    }
    astream.wait();
M
mozga-intel 已提交
153 154
  }

155
 private:
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  // DNNL always returns 2-dimensional data block as a result of computing
  // inner product. Hence the format 'nc' is always set for its output
  // primitive. Therefore, function SetOutputFormat is needed to choose
  // an appropriate format based on the number of input dimensions and
  // format of an input tensor.
  void SetOutputFormat(MKLDNNMemoryFormat in_format, Tensor* out) {
    int dim_num = out->dims().size();
    // In case of 2 dims, we set the only possible format, nc
    if (dim_num == 2) {
      out->set_format(MKLDNNMemoryFormat::nc);
      // In case of 3 dims, we generate a format that is based on number
      // of output dims and the layout of input format (nchw or nhwc).
    } else if (dim_num == 3) {
      if (in_format == MKLDNNMemoryFormat::nwc ||
          in_format == MKLDNNMemoryFormat::nhwc) {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nhwc));
      } else {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nchw));
      }
      // In any other case we overwrite the output format with the input one.
    } else {
      out->set_format(in_format);
    }
  }

183 184
  void UpdateDataPointers(const ExecutionContext& ctx, Tensor* out,
                          const Tensor* in) {
M
Michał Gallus 已提交
185 186 187 188 189
    input_->set_data_handle(to_void_cast(in->data<T_in>()));
    output_->set_data_handle(out->mutable_data<T_out>(ctx.GetPlace()));
    // If the primitive exists, but the output tensor has changed its
    // variable, update its format to what has been determined in first
    // call to CreateFcPrimitive method.
A
Adam 已提交
190
    if (out->format() == MKLDNNMemoryFormat::undef) {
191
      SetOutputFormat(in->format(), out);
192
    }
M
mozga-intel 已提交
193 194
  }

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  mkldnn::inner_product_forward::primitive_desc Create2DFcPrimDescriptor(
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    auto weight_dims = Get2DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get2DWeightDimsForDNNL(const Tensor* weights) {
    auto dims = framework::vectorize(weights->dims());
    std::swap(dims[0], dims[1]);  // swap input dim with output dim
    return dims;
  }

  memory::desc Create2DUserWeightsDesc() { return weights_->get_desc(); }

  mkldnn::inner_product_forward::primitive_desc Create3DFcPrimDescriptor(
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto input_dims = framework::vectorize(input->dims());
220 221
    std::vector<int64_t> new_input_dims = {input_dims[0] * input_dims[1],
                                           input_dims[2], 1};
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    auto src_desc = CreateMemDescriptor<T_in>(new_input_dims, input->format());

    auto weight_dims = Get3DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);

    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);

    auto dst_dims = {input_dims[0] * input_dims[1], weight_dims[0]};
    auto dst_desc =
        CreateMemDescriptor<T_out>(dst_dims, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get3DWeightDimsForDNNL(const Tensor* weights) {
    auto paddle_w_dims = framework::vectorize(weights->dims());
239
    return {paddle_w_dims[1], paddle_w_dims[0], 1};
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  }

  memory::desc Create3DUserWeightsDesc(const Tensor* weights) {
    auto dims = Get3DWeightDimsForDNNL(weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oiw);
  }

  mkldnn::inner_product_forward::primitive_desc Create4DFcPrimDescriptor(
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    // Since MKL-DNN doesn't support 4D column-major data formats in
    // inner_product primitive, transpose the weights to be in
    // row-major format
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    auto weights_desc = CreateMemDescriptor<T_w>(dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get4DWeightDimsForDNNL(const LoDTensor* input,
                                              const Tensor* weights) {
    auto old_w_dims = framework::vectorize(weights->dims());
    auto old_in_dims = framework::vectorize(input->dims());
    auto dims = {old_w_dims[1], old_in_dims[1], old_in_dims[2], old_in_dims[3]};
    return dims;
  }

  memory::desc Create4DUserWeightsDesc(const LoDTensor* input,
                                       const Tensor* weights) {
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oihw);
M
mozga-intel 已提交
274 275
  }

M
Michał Gallus 已提交
276
  // Convert data from one data format to another
277 278 279
  std::shared_ptr<mkldnn::memory> Reorder(const memory::desc& src_desc,
                                          const memory::desc& dst_desc,
                                          void* src_data) {
A
Adam 已提交
280
    auto src_mem = memory(src_desc, engine_, src_data);
281
    auto dst_mem = std::make_shared<memory>(dst_desc, engine_);
M
mozga-intel 已提交
282

283
    auto reorder = mkldnn::reorder(src_mem, *dst_mem);
284
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
285 286 287 288 289 290 291

    {
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder.execute(astream, src_mem, *dst_mem);
      astream.wait();
    }
M
mozga-intel 已提交
292

293
    return dst_mem;
M
mozga-intel 已提交
294 295
  }

M
Michał Gallus 已提交
296 297
  // Convert data from one data format to another and rescale it.
  // If the desired data type is (un)signed int8, quantization occurs here.
298 299 300 301
  std::shared_ptr<mkldnn::memory> ReorderWithScale(
      const std::shared_ptr<memory> src_mem, const memory::desc& dst_md,
      const std::vector<float>& scale_data) {
    auto dst_mem = std::make_shared<mkldnn::memory>(dst_md, engine_);
M
Michał Gallus 已提交
302 303 304 305 306 307 308 309 310
    mkldnn::primitive_attr attributes;
    // According to MKL-DNN's documentation mask determines along which
    // dimensions should the scale be applied.
    // 0 - Single scale applied to whole tensor
    // 1 - Apply Scale along a slice of each dimension which index is 1.
    //     In case of weights quantization, that dimension is output,
    //     becuase we perform per-output-channel quantization
    int mask = CreateMask(0, scale_data.size() > 1);
    attributes.set_output_scales(mask, scale_data);
311
    auto reorder = mkldnn::reorder(*src_mem, *dst_mem, attributes);
M
Michał Gallus 已提交
312

313
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
314 315 316 317 318 319 320
    {
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder.execute(astream,
                      {{MKLDNN_ARG_FROM, *src_mem}, {MKLDNN_ARG_TO, *dst_mem}});
      astream.wait();
    }
M
Michał Gallus 已提交
321 322 323 324 325

    return dst_mem;
  }

  template <typename T>
A
Adam 已提交
326 327
  static mkldnn::memory::desc CreateMemDescriptor(
      const std::vector<int64_t>& dims, MKLDNNMemoryFormat format) {
328 329
    return platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(),
                                   format);
M
mozga-intel 已提交
330 331
  }

M
Michał Gallus 已提交
332
  template <typename T>
333
  static mkldnn::memory::desc CreateMemDescriptor(const Tensor* tensor,
334
                                                  MKLDNNMemoryFormat format) {
A
Adam 已提交
335
    auto dims = framework::vectorize(tensor->dims());
M
Michał Gallus 已提交
336
    return CreateMemDescriptor<T>(dims, format);
M
mozga-intel 已提交
337 338
  }

M
Michał Gallus 已提交
339
  template <typename T>
340 341
  mkldnn::memory CreateMemory(const mkldnn::memory::desc& desc,
                              const Tensor* tensor) {
A
Adam 已提交
342
    return CreateMemory(desc, platform::to_void_cast<T>(tensor->data<T>()));
M
mozga-intel 已提交
343 344
  }

A
Adam 已提交
345 346
  mkldnn::memory CreateMemory(const mkldnn::memory::desc& desc, void* data) {
    return memory(desc, engine_, data);
M
mozga-intel 已提交
347 348
  }

349 350 351 352 353 354 355 356 357 358 359 360 361 362
  template <typename T>
  std::shared_ptr<mkldnn::memory> CreateMemoryToBeCached(
      const mkldnn::memory::desc& desc, const Tensor* tensor) {
    return CreateMemoryToBeCached(desc,
                                  platform::to_void_cast<T>(tensor->data<T>()));
  }

  std::shared_ptr<mkldnn::memory> CreateMemoryToBeCached(
      const mkldnn::memory::desc& desc, void* data) {
    return std::make_shared<memory>(desc, engine_, data);
  }

  // Create weights memory and transform to default MKL-DNN format
  std::shared_ptr<mkldnn::memory> CreateWeightsMemory(const Tensor* weights) {
A
Adam 已提交
363
    auto dims = framework::vectorize(weights->dims());
364
    std::swap(dims[0], dims[1]);  // Correct output dimensions
M
Michał Gallus 已提交
365 366
    auto src_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oi);
367
    // Transpose weights through MKL-DNN's reorder from io to oi format.
A
Adam 已提交
368 369
    return Reorder(src_desc, dst_desc,
                   platform::to_void_cast<float>(weights->data<float>()));
M
Michał Gallus 已提交
370 371
  }

372 373
  void CacheWeightsAndBias(const MKLDNNDeviceContext& dev_ctx,
                           const ExecutionContext& ctx) {
374 375 376
    std::string key = platform::CreateKey(dev_ctx);
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

377 378 379 380 381 382
    const std::string weights_key = key + ctx.InputName("W");
    const std::string bias_key = key + ctx.InputName("Bias");
    dev_ctx.SetBlob(weights_key, weights_);
    dev_ctx.SetBlob(bias_key, bias_);
  }

M
Michał Gallus 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
  std::vector<float> ComputeBiasScales(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> bias_scales(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        bias_scales[i] = 1.0f;
      else
        bias_scales[i] = scale_in_data * scale_weights_data[i];
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
  std::vector<float> ComputeOutputShiftScale(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    // If the output will be in floats, we don't multiply by scale_out.
    auto scale_out_data = ctx.Attr<bool>("force_fp32_output")
                              ? 1.0f
                              : ctx.Attr<float>("Scale_out");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            scale_out_data / (scale_in_data * scale_weights_data[i]);
    }

    return output_shift_scale;
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

437
  void QuantizeWeights(const ExecutionContext& ctx, memory::desc dst) {
438 439
    weights_ = ReorderWithScale(weights_, dst,
                                ctx.Attr<std::vector<float>>("Scale_weights"));
M
Michał Gallus 已提交
440 441 442 443 444
  }

  void QuantizeBias(const inner_product_forward::primitive_desc& fc_prim_desc,
                    const ExecutionContext& ctx) {
    auto bias_scales = ComputeBiasScales(ctx);
445
    bias_ = ReorderWithScale(bias_, fc_prim_desc.bias_desc(), bias_scales);
M
Michał Gallus 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  }

  // Fuse relu into FC with activation type attribute has been set to 'relu'
  mkldnn::primitive_attr CreatePostOps(const ExecutionContext& ctx) {
    mkldnn::primitive_attr attributes;
    mkldnn::post_ops post_operations;

    auto output_shift_scale = ComputeOutputShiftScale(ctx);
    int mask = CreateMask(1, output_shift_scale.size() > 1);
    attributes.set_output_scales(mask, output_shift_scale);

    if (ctx.Attr<std::string>("activation_type") == "relu") {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    } else if (ctx.Attr<std::string>("activation_type") == "gelu") {
      constexpr float scale = 1.0f;
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_gelu,
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "gelu_tanh") {
      constexpr float scale = 1.0f;
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
      post_operations.append_eltwise(
          scale, mkldnn::algorithm::eltwise_gelu_tanh, alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "gelu_erf") {
      constexpr float scale = 1.0f;
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_gelu_erf,
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "tanh") {
      constexpr float scale = 1.0f;
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_tanh,
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "sigmoid") {
      constexpr float scale = 1.0f;
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_logistic,
                                     alpha, beta);
J
jakpiase 已提交
493 494 495 496 497 498
    } else if (ctx.Attr<std::string>("activation_type") == "hard_swish") {
      constexpr float scale = 1.0f;
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
      post_operations.append_eltwise(
          scale, mkldnn::algorithm::eltwise_hardswish, alpha, beta);
M
Michał Gallus 已提交
499 500 501 502
    }

    attributes.set_post_ops(post_operations);
    return attributes;
503
  }
M
mozga-intel 已提交
504

505 506 507 508
  mkldnn::inner_product_forward::primitive_desc CreateFcPrimDesc(
      const mkldnn::memory::desc& input_desc,
      const mkldnn::memory::desc& weights_desc,
      const mkldnn::memory::desc& bias_desc,
M
Michał Gallus 已提交
509 510
      const mkldnn::memory::desc& dst_desc,
      const mkldnn::primitive_attr& attrs) {
511 512 513
    auto fc_desc =
        inner_product_forward::desc(prop_kind::forward_scoring, input_desc,
                                    weights_desc, bias_desc, dst_desc);
M
mozga-intel 已提交
514

M
Michał Gallus 已提交
515
    return inner_product_forward::primitive_desc(fc_desc, attrs, engine_);
516
  }
M
mozga-intel 已提交
517

M
Michał Gallus 已提交
518 519
  // Create output memory based on output tensor and inner_product
  // primitive descriptor format chosen for output
520 521 522
  mkldnn::memory CreateDstMemory(
      const mkldnn::inner_product_forward::primitive_desc& fc_prim_desc,
      const ExecutionContext& ctx, Tensor* output) {
A
Adam 已提交
523 524
    auto dst_desc = fc_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
M
Michał Gallus 已提交
525 526
    T_out* output_data =
        output->mutable_data<T_out>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
527
    memory dst_mem(dst_desc, engine_, to_void_cast<T_out>(output_data));
528
    SetOutputFormat(ctx.Input<LoDTensor>("Input")->format(), output);
529

A
Adam 已提交
530
    return dst_mem;
531
  }
M
mozga-intel 已提交
532

533 534
  void RecomputeOutputDims(const ExecutionContext& ctx, const LoDTensor* input,
                           const Tensor* w, LoDTensor* output) {
L
luotao1 已提交
535
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
536 537 538 539
    bool padding_weights = ctx.Attr<bool>("padding_weights");
    PADDLE_ENFORCE_EQ(padding_weights, false,
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
540
    std::vector<int64_t> output_dims;
541 542
    FCOutputSize(input->dims(), w->dims(), output_dims, in_num_col_dims,
                 padding_weights);
L
luotao1 已提交
543 544
    output->Resize(framework::make_ddim(output_dims));
    output->set_lod(input->lod());
545
  }
L
luotao1 已提交
546

547 548
 private:
  const mkldnn::engine& engine_;
549 550
  paddle::optional<memory> input_;
  paddle::optional<memory> output_;
551 552
  std::shared_ptr<memory> bias_;
  std::shared_ptr<memory> weights_;
553
  paddle::optional<inner_product_forward> fc_;
554
};
M
mozga-intel 已提交
555

M
Michał Gallus 已提交
556 557 558 559 560 561
// Attempt to fetch cached primitive factory based on provided parameters
// of input format, weight dimensions and output name.
// If not cached, create a new one.
template <typename T_in, typename T_w, typename T_out>
static std::shared_ptr<FCPrimitiveFactory<T_in, T_w, T_out>>
GetPrimitiveFactory(const MKLDNNDeviceContext& dev_ctx,
562
                    const std::string& key) {
563
  auto prim_creator =
M
Michał Gallus 已提交
564 565
      std::static_pointer_cast<FCPrimitiveFactory<T_in, T_w, T_out>>(
          dev_ctx.GetBlob(key));
566
  if (prim_creator == nullptr) {
567 568
    prim_creator = std::make_shared<FCPrimitiveFactory<T_in, T_w, T_out>>(
        dev_ctx.GetEngine());
569
    dev_ctx.SetBlob(key, prim_creator);
M
mozga-intel 已提交
570 571
  }

572 573
  return prim_creator;
}
M
mozga-intel 已提交
574

M
Michał Gallus 已提交
575 576 577
// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename T_in, typename T_w>
578
static void ExecuteFc(const ExecutionContext& ctx, const LoDTensor* input,
A
Adam 已提交
579
                      const Tensor* w, const Tensor* bias, LoDTensor* output,
580 581
                      bool fuse_relu, bool force_fp32_output) {
  auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
582 583 584 585 586
  std::string prim_key = platform::CreateKey(
      dev_ctx, input->format(), input->dims()[0],
      framework::vectorize<int>(w->dims()), ctx.OutputName("Out"));
  prim_key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, prim_key);

M
Michał Gallus 已提交
587 588
  constexpr bool is_int8 =
      std::is_same<T_in, int8_t>::value || std::is_same<T_in, uint8_t>::value;
589 590
  bool is_bfloat16 = std::is_same<T_in, paddle::platform::bfloat16>::value;
  if ((!is_int8 && !is_bfloat16) || force_fp32_output) {
591 592
    GetPrimitiveFactory<T_in, T_w, float>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
593 594 595
  } else if (is_bfloat16) {
    GetPrimitiveFactory<T_in, T_w, platform::bfloat16>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
596
  } else if (fuse_relu) {
597 598
    GetPrimitiveFactory<T_in, T_w, uint8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
599
  } else {
600 601
    GetPrimitiveFactory<T_in, T_w, int8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
602 603 604 605 606
  }
}

template <typename T_in, typename T_w>
class FCMKLDNNOpKernel : public framework::OpKernel<T_in> {
M
mozga-intel 已提交
607 608
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
Michał Gallus 已提交
609 610 611
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("FC MKL-DNN must use CPUPlace."));
612
    platform::MKLDNNDeviceContext::tls().log_lib_version();
613 614
    auto input = ctx.Input<LoDTensor>("Input");
    auto w = ctx.Input<Tensor>("W");
T
tensor-tang 已提交
615
    auto bias = ctx.Input<Tensor>("Bias");
616
    auto output = ctx.Output<LoDTensor>("Out");
M
mozga-intel 已提交
617

M
Michał Gallus 已提交
618 619 620
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

621 622
    ExecuteFc<T_in, T_w>(ctx, input, w, bias, output, fuse_relu,
                         force_fp32_output);
M
mozga-intel 已提交
623

624
    output->set_layout(DataLayout::kMKLDNN);
M
mozga-intel 已提交
625 626 627 628 629
  }
};
}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
630 631 632 633 634 635 636 637
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    FP32, ops::kFCMKLDNNFP32,
                                    ops::FCMKLDNNOpKernel<float, float>);

638 639 640 641 642
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    fc, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kFCMKLDNNFP32,
    ops::FCMKLDNNOpKernel<paddle::platform::bfloat16,
                          paddle::platform::bfloat16>);

M
Michał Gallus 已提交
643 644 645 646 647 648 649
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    U8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<uint8_t, int8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    S8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<int8_t, int8_t>);