CrossMapNormalOp.cpp 7.9 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hedaoyuan 已提交
15
#include "CrossMapNormalOp.h"
H
hedaoyuan 已提交
16
#include "paddle/math/Vector.h"
H
hedaoyuan 已提交
17 18 19

namespace paddle {

H
hedaoyuan 已提交
20
template <>
H
hedaoyuan 已提交
21 22
void CrossMapNormal<DEVICE_TYPE_CPU>(real* outputs,
                                     real* denoms,
H
hedaoyuan 已提交
23
                                     const real* inputs,
H
hedaoyuan 已提交
24 25 26 27 28 29 30 31 32 33 34
                                     size_t numSamples,
                                     size_t channels,
                                     size_t height,
                                     size_t width,
                                     size_t size,
                                     real scale,
                                     real pow) {
  size_t oneImage = height * width;
  size_t oneSample = channels * oneImage;

  CpuVector outputsV(numSamples * oneSample, outputs);
H
hedaoyuan 已提交
35
  CpuVector inputsV(numSamples * oneSample, const_cast<real*>(inputs));
H
hedaoyuan 已提交
36 37
  CpuVector denomsV(numSamples * oneSample, denoms);

H
hedaoyuan 已提交
38 39 40 41
  // f(x) = x * ( 1 + scale * SUM((x)^2) )^(-pow)
  // x represents inputs
  // f(x) represents outputs
  // denoms save the intermediate result for backward
H
hedaoyuan 已提交
42 43 44 45 46
  denomsV = denomsV.constant(1.0);
  const int start = -((int)size - 1) / 2;
  const int end = (int)size + start;
  for (size_t i = 0; i < numSamples; i++) {
    real* oneDenom = denoms + i * oneSample;
H
hedaoyuan 已提交
47
    real* oneInput = const_cast<real*>(inputs) + i * oneSample;
H
hedaoyuan 已提交
48
    for (int c = 0; c < (int)channels; c++) {
H
hedaoyuan 已提交
49
      CpuVector denom(oneImage, oneDenom + c * oneImage);
H
hedaoyuan 已提交
50 51
      for (int s = start; s < end; s++) {
        if (c + s >= 0 && c + s < (int)channels) {
H
hedaoyuan 已提交
52
          CpuVector input(oneImage, oneInput + (c + s) * oneImage);
H
hedaoyuan 已提交
53 54 55 56 57
          denom += input.square() * scale;
        }
      }
    }
  }
H
hedaoyuan 已提交
58 59

  outputsV = inputsV * denomsV.pow(-pow);
H
hedaoyuan 已提交
60 61
}

H
hedaoyuan 已提交
62
template <>
H
hedaoyuan 已提交
63
void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
H
hedaoyuan 已提交
64 65 66 67
                                         const real* inputsValue,
                                         const real* outputsValue,
                                         const real* outputsGrad,
                                         const real* denoms,
H
hedaoyuan 已提交
68 69 70 71 72 73 74 75
                                         size_t numSamples,
                                         size_t channels,
                                         size_t height,
                                         size_t width,
                                         size_t size,
                                         real scale,
                                         real pow) {
  size_t oneSample = channels * height * width;
H
hedaoyuan 已提交
76 77
  std::function<CpuVector(real*, size_t)> oneImage = [=](real* data,
                                                         size_t offset) {
H
hedaoyuan 已提交
78
    return CpuVector(height * width, data + offset);
H
hedaoyuan 已提交
79 80
  };

H
hedaoyuan 已提交
81 82
  const int start = -((int)size) / 2;
  const int end = (int)size + start;
H
hedaoyuan 已提交
83
  const real ratio = -(real)2 * scale * pow;
H
hedaoyuan 已提交
84 85 86
  for (size_t i = 0; i < numSamples; i++) {
    size_t sOffset = i * oneSample;
    real* oneInputGrad = inputsGrad + sOffset;
H
hedaoyuan 已提交
87 88 89 90
    real* oneInputValue = const_cast<real*>(inputsValue) + sOffset;
    real* oneDenom = const_cast<real*>(denoms) + sOffset;
    real* oneOutputGrad = const_cast<real*>(outputsGrad) + sOffset;
    real* oneOutputValue = const_cast<real*>(outputsValue) + sOffset;
H
hedaoyuan 已提交
91 92

    for (int c = 0; c < (int)channels; c++) {
H
hedaoyuan 已提交
93 94 95 96 97
      size_t cOffset = c * height * width;
      CpuVector inputGrad = oneImage(oneInputGrad, cOffset);
      CpuVector inputValue = oneImage(oneInputValue, cOffset);
      CpuVector denom = oneImage(oneDenom, cOffset);
      CpuVector outputGrad = oneImage(oneOutputGrad, cOffset);
H
hedaoyuan 已提交
98 99 100 101

      inputGrad = inputGrad + denom.pow(-pow) * outputGrad;
      for (int s = start; s < end; s++) {
        if (c + s >= 0 && c + s < (int)channels) {
H
hedaoyuan 已提交
102 103 104 105
          size_t offset = (c + s) * height * width;
          CpuVector output = oneImage(oneOutputValue, offset);
          CpuVector outputGrad = oneImage(oneOutputGrad, offset);
          CpuVector denom = oneImage(oneDenom, offset);
H
hedaoyuan 已提交
106 107 108 109 110 111 112 113

          inputGrad += ((outputGrad * output * ratio) / denom) * inputValue;
        }
      }
    }
  }
}

H
hedaoyuan 已提交
114 115 116 117 118
/**
 * \param inputs[0] input value.
 * \param outputs[0] output value.
 * \param outputs[1] denoms.
 */
H
hedaoyuan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
template <DeviceType Device>
class CrossMapNormalFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    size_ = config.get<size_t>("size");
    scale_ = config.get<real>("scale");
    pow_ = config.get<real>("pow");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
    CHECK_EQ(1, inputs.size());
    CHECK_EQ(2, outputs.size());
    CHECK_EQ(0, inouts.size());

135 136 137 138 139 140 141 142 143 144 145
    CHECK_EQ(inputs[0].dims_.size(), 4);
    for (size_t i = 0; i < inputs[0].dims_.size(); i++) {
      CHECK_EQ(inputs[0].dims_[i], outputs[0].dims_[i]);
      CHECK_EQ(inputs[0].dims_[i], outputs[1].dims_[i]);
    }

    size_t samples = inputs[0].dims_[0];
    size_t channels = inputs[0].dims_[1];
    size_t height = inputs[0].dims_[2];
    size_t width = inputs[0].dims_[3];

H
hedaoyuan 已提交
146 147 148 149 150 151 152 153 154 155
    CrossMapNormal<Device>(outputs[0].getData(),
                           outputs[1].getData(),
                           inputs[0].getData(),
                           samples,
                           channels,
                           height,
                           width,
                           size_,
                           scale_,
                           pow_);
H
hedaoyuan 已提交
156 157 158 159 160 161 162 163
  }

private:
  size_t size_;
  real scale_;
  real pow_;
};

H
hedaoyuan 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/**
 * \param inputs[0] input value.
 * \param inputs[1] output value.
 * \param inputs[2] output grad.
 * \param inputs[3] denoms.
 * \param outputs[0] input grad.
 */
template <DeviceType Device>
class CrossMapNormalGradFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    size_ = config.get<size_t>("size");
    scale_ = config.get<real>("scale");
    pow_ = config.get<real>("pow");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
    CHECK_EQ(4, inputs.size());
    CHECK_EQ(1, outputs.size());
    CHECK_EQ(0, inouts.size());

    CHECK_EQ(inputs[0].dims_.size(), 4);
    for (size_t i = 0; i < inputs[0].dims_.size(); i++) {
      CHECK_EQ(inputs[0].dims_[i], inputs[1].dims_[i]);
      CHECK_EQ(inputs[0].dims_[i], inputs[2].dims_[i]);
      CHECK_EQ(inputs[0].dims_[i], inputs[3].dims_[i]);
      CHECK_EQ(inputs[0].dims_[i], outputs[0].dims_[i]);
    }

    size_t samples = inputs[0].dims_[0];
    size_t channels = inputs[0].dims_[1];
    size_t height = inputs[0].dims_[2];
    size_t width = inputs[0].dims_[3];

    CrossMapNormalGrad<Device>(outputs[0].getData(),
                               inputs[0].getData(),
                               inputs[1].getData(),
                               inputs[2].getData(),
                               inputs[3].getData(),
                               samples,
                               channels,
                               height,
                               width,
                               size_,
                               scale_,
                               pow_);
  }

private:
  size_t size_;
  real scale_;
  real pow_;
};

H
hedaoyuan 已提交
220
REGISTER_TYPED_FUNC(CrossMapNormal, CPU, CrossMapNormalFunc);
H
hedaoyuan 已提交
221
REGISTER_TYPED_FUNC(CrossMapNormalGrad, CPU, CrossMapNormalGradFunc);
H
hedaoyuan 已提交
222 223
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(CrossMapNormal, GPU, CrossMapNormalFunc);
H
hedaoyuan 已提交
224
REGISTER_TYPED_FUNC(CrossMapNormalGrad, GPU, CrossMapNormalGradFunc);
H
hedaoyuan 已提交
225
#endif
H
hedaoyuan 已提交
226

H
hedaoyuan 已提交
227
}  // namespace paddle