Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d2d00106
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d2d00106
编写于
12月 15, 2016
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add CrossMapNormalGradFunc
上级
9171ab0a
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
190 addition
and
156 deletion
+190
-156
paddle/gserver/layers/NormProjectionLayer.cpp
paddle/gserver/layers/NormProjectionLayer.cpp
+29
-12
paddle/gserver/layers/NormProjectionLayer.h
paddle/gserver/layers/NormProjectionLayer.h
+4
-3
paddle/math/Function.h
paddle/math/Function.h
+1
-1
paddle/math/cross_map_normal_op.cpp
paddle/math/cross_map_normal_op.cpp
+96
-49
paddle/math/cross_map_normal_op.h
paddle/math/cross_map_normal_op.h
+12
-28
paddle/math/cross_map_normal_op_gpu.cu
paddle/math/cross_map_normal_op_gpu.cu
+16
-38
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+32
-25
未找到文件。
paddle/gserver/layers/NormProjectionLayer.cpp
浏览文件 @
d2d00106
...
...
@@ -13,10 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "NormProjectionLayer.h"
#include "paddle/math/cross_map_normal_op.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "paddle/math/cross_map_normal_op.h"
#include "NormProjectionLayer.h"
namespace
paddle
{
size_t
CMRProjectionNormLayer
::
getSize
()
{
...
...
@@ -48,13 +47,23 @@ bool CMRProjectionNormLayer::init(const LayerMap& layerMap,
CHECK_EQ
(
config_
.
inputs_size
(),
1
);
if
(
useGpu_
)
{
normal
_
=
FunctionBase
::
funcRegistrar_
.
createByType
(
forward
_
=
FunctionBase
::
funcRegistrar_
.
createByType
(
FUNC_NAME
(
CrossMapNormal
,
GPU
));
}
else
{
normal
_
=
FunctionBase
::
funcRegistrar_
.
createByType
(
forward
_
=
FunctionBase
::
funcRegistrar_
.
createByType
(
FUNC_NAME
(
CrossMapNormal
,
CPU
));
}
normal_
->
init
(
forward_
->
init
(
FuncConfig
().
set
(
"size"
,
size_
).
set
(
"scale"
,
scale_
).
set
(
"pow"
,
pow_
));
if
(
useGpu_
)
{
backward_
=
FunctionBase
::
funcRegistrar_
.
createByType
(
FUNC_NAME
(
CrossMapNormalGrad
,
GPU
));
}
else
{
backward_
=
FunctionBase
::
funcRegistrar_
.
createByType
(
FUNC_NAME
(
CrossMapNormalGrad
,
CPU
));
}
backward_
->
init
(
FuncConfig
().
set
(
"size"
,
size_
).
set
(
"scale"
,
scale_
).
set
(
"pow"
,
pow_
));
return
true
;
...
...
@@ -74,13 +83,13 @@ void CMRProjectionNormLayer::forward(PassType passType) {
Matrix
::
resizeOrCreate
(
denoms_
,
batchSize
,
size
,
/* trans */
false
,
useGpu_
);
Dims
dims
{(
size_t
)
batchSize
,
(
size_t
)
channels_
,
(
size_t
)
imgSizeH_
,
(
size_t
)
imgSizeW_
};
normal
_
->
calc
(
{
Tensor
(
input
->
getData
(),
dims
)},
{
Tensor
(
outV
->
getData
(),
dims
),
Tensor
(
denoms_
->
getData
(),
dims
)},
dims_
=
{(
size_t
)
batchSize
,
(
size_t
)
channels_
,
(
size_t
)
imgSizeH_
,
(
size_t
)
imgSizeW_
};
forward
_
->
calc
(
{
Tensor
(
input
->
getData
(),
dims
_
)},
{
Tensor
(
outV
->
getData
(),
dims
_
),
Tensor
(
denoms_
->
getData
(),
dims_
)},
{});
}
...
...
@@ -96,6 +105,13 @@ void CMRProjectionNormLayer::backward(const UpdateCallback& callback) {
MatrixPtr
localOutV
=
getOutputValue
();
MatrixPtr
preOutV
=
inputLayers_
[
0
]
->
getOutputValue
();
backward_
->
calc
({
Tensor
(
preOutV
->
getData
(),
dims_
),
Tensor
(
localOutV
->
getData
(),
dims_
),
Tensor
(
localGrad
->
getData
(),
dims_
),
Tensor
(
denoms_
->
getData
(),
dims_
)},
{
Tensor
(
preOutGrad
->
getData
(),
dims_
)},
{});
#if 0
if (useGpu_) {
CrossMapNormalGrad<DEVICE_TYPE_GPU> crossGrad;
crossGrad(dynamic_cast<GpuMatrix&>(*preOutGrad),
...
...
@@ -123,5 +139,6 @@ void CMRProjectionNormLayer::backward(const UpdateCallback& callback) {
scale_,
pow_);
}
#endif
}
}
// namespace paddle
paddle/gserver/layers/NormProjectionLayer.h
浏览文件 @
d2d00106
...
...
@@ -16,9 +16,8 @@ limitations under the License. */
#include <vector>
#include "NormLayer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Function.h"
#include
<vector>
#include
"paddle/math/Matrix.h"
namespace
paddle
{
...
...
@@ -43,6 +42,8 @@ public:
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
);
protected:
FunctionBase
*
normal_
;
Dims
dims_
;
FunctionBase
*
forward_
;
FunctionBase
*
backward_
;
};
}
// namespace paddle
paddle/math/Function.h
浏览文件 @
d2d00106
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
#include <map>
#include <vector>
#include "paddle/utils/ClassRegistrar.h"
#include "paddle/math/Matrix.h"
#include "paddle/utils/ClassRegistrar.h"
namespace
paddle
{
...
...
paddle/math/cross_map_normal_op.cpp
浏览文件 @
d2d00106
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "cross_map_normal_op.h"
#include "paddle/math/Vector.h"
namespace
paddle
{
...
...
@@ -56,66 +57,49 @@ void CrossMapNormal<DEVICE_TYPE_CPU>(real* outputs,
}
template
<
>
void
CrossMapNormalGrad
<
DEVICE_TYPE_CPU
>::
operator
()(
CpuMatrix
&
inputsGrad
,
CpuMatrix
&
inputsValue
,
CpuMatrix
&
outputsGrad
,
CpuMatrix
&
outputsValue
,
CpuMatrix
&
denoms
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
real
scale
,
real
pow
)
{
CHECK
(
inputsGrad
.
isContiguous
());
CHECK
(
outputsGrad
.
isContiguous
());
CHECK
(
denoms
.
isContiguous
());
CHECK
(
inputsValue
.
isContiguous
());
CHECK
(
outputsValue
.
isContiguous
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
outputsGrad
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
outputsGrad
.
getWidth
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
denoms
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
denoms
.
getWidth
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
inputsValue
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
inputsValue
.
getWidth
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
outputsValue
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
outputsValue
.
getWidth
());
size_t
numSample
=
inputsGrad
.
getHeight
();
size_t
numCols
=
inputsGrad
.
getWidth
();
size_t
imageSize
=
imgSizeH
*
imgSizeW
;
CHECK
(
imageSize
*
channels
==
numCols
);
void
CrossMapNormalGrad
<
DEVICE_TYPE_CPU
>
(
real
*
inputsGrad
,
real
*
inputsValue
,
real
*
outputsValue
,
real
*
outputsGrad
,
real
*
denoms
,
size_t
numSamples
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
size
,
real
scale
,
real
pow
)
{
size_t
oneSample
=
channels
*
height
*
width
;
std
::
function
<
CpuVector
(
real
*
,
size_t
)
>
oneImage
=
[
=
](
real
*
data
,
size_t
offset
)
{
return
CpuVector
(
imageSize
,
data
+
offset
);
return
CpuVector
(
height
*
width
,
data
+
offset
);
};
const
int
start
=
-
((
int
)
size
X
)
/
2
;
const
int
end
=
(
int
)
size
X
+
start
;
const
int
start
=
-
((
int
)
size
)
/
2
;
const
int
end
=
(
int
)
size
+
start
;
const
real
ratio
=
-
(
real
)
2
*
scale
*
pow
;
for
(
size_t
i
=
0
;
i
<
numSample
;
i
++
)
{
size_t
sOffset
=
i
*
numCols
;
real
*
inputGradData
=
inputsGrad
.
getData
()
+
sOffset
;
real
*
inputData
=
inputsValue
.
getData
()
+
sOffset
;
real
*
denomData
=
denoms
.
getData
()
+
sOffset
;
real
*
o
utputGradData
=
outputsGrad
.
getData
()
+
sOffset
;
real
*
o
utputData
=
outputsValue
.
getData
()
+
sOffset
;
for
(
size_t
i
=
0
;
i
<
numSample
s
;
i
++
)
{
size_t
sOffset
=
i
*
oneSample
;
real
*
oneInputGrad
=
inputsGrad
+
sOffset
;
real
*
oneInputValue
=
inputsValue
+
sOffset
;
real
*
oneDenom
=
denoms
+
sOffset
;
real
*
o
neOutputGrad
=
outputsGrad
+
sOffset
;
real
*
o
neOutputValue
=
outputsValue
+
sOffset
;
for
(
int
c
=
0
;
c
<
(
int
)
channels
;
c
++
)
{
size_t
cOffset
=
c
*
imageSize
;
CpuVector
inputGrad
=
oneImage
(
inputGradData
,
cOffset
);
CpuVector
inputValue
=
oneImage
(
inputData
,
cOffset
);
CpuVector
denom
=
oneImage
(
denomData
,
cOffset
);
CpuVector
outputGrad
=
oneImage
(
o
utputGradData
,
cOffset
);
size_t
cOffset
=
c
*
height
*
width
;
CpuVector
inputGrad
=
oneImage
(
oneInputGrad
,
cOffset
);
CpuVector
inputValue
=
oneImage
(
oneInputValue
,
cOffset
);
CpuVector
denom
=
oneImage
(
oneDenom
,
cOffset
);
CpuVector
outputGrad
=
oneImage
(
o
neOutputGrad
,
cOffset
);
inputGrad
=
inputGrad
+
denom
.
pow
(
-
pow
)
*
outputGrad
;
for
(
int
s
=
start
;
s
<
end
;
s
++
)
{
if
(
c
+
s
>=
0
&&
c
+
s
<
(
int
)
channels
)
{
size_t
offset
=
(
c
+
s
)
*
imageSize
;
CpuVector
output
=
oneImage
(
o
utputData
,
offset
);
CpuVector
outputGrad
=
oneImage
(
o
utputGradData
,
offset
);
CpuVector
denom
=
oneImage
(
denomData
,
offset
);
size_t
offset
=
(
c
+
s
)
*
height
*
width
;
CpuVector
output
=
oneImage
(
o
neOutputValue
,
offset
);
CpuVector
outputGrad
=
oneImage
(
o
neOutputGrad
,
offset
);
CpuVector
denom
=
oneImage
(
oneDenom
,
offset
);
inputGrad
+=
((
outputGrad
*
output
*
ratio
)
/
denom
)
*
inputValue
;
}
...
...
@@ -124,6 +108,11 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>::operator()(CpuMatrix& inputsGrad,
}
}
/**
* \param inputs[0] input value.
* \param outputs[0] output value.
* \param outputs[1] denoms.
*/
template
<
DeviceType
Device
>
class
CrossMapNormalFunc
:
public
FunctionBase
{
public:
...
...
@@ -169,7 +158,65 @@ private:
real
pow_
;
};
/**
* \param inputs[0] input value.
* \param inputs[1] output value.
* \param inputs[2] output grad.
* \param inputs[3] denoms.
* \param outputs[0] input grad.
*/
template
<
DeviceType
Device
>
class
CrossMapNormalGradFunc
:
public
FunctionBase
{
public:
void
init
(
const
FuncConfig
&
config
)
override
{
size_
=
config
.
get
<
size_t
>
(
"size"
);
scale_
=
config
.
get
<
real
>
(
"scale"
);
pow_
=
config
.
get
<
real
>
(
"pow"
);
}
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
CHECK_EQ
(
4
,
inputs
.
size
());
CHECK_EQ
(
1
,
outputs
.
size
());
CHECK_EQ
(
0
,
inouts
.
size
());
CHECK_EQ
(
inputs
[
0
].
dims_
.
size
(),
4
);
for
(
size_t
i
=
0
;
i
<
inputs
[
0
].
dims_
.
size
();
i
++
)
{
CHECK_EQ
(
inputs
[
0
].
dims_
[
i
],
inputs
[
1
].
dims_
[
i
]);
CHECK_EQ
(
inputs
[
0
].
dims_
[
i
],
inputs
[
2
].
dims_
[
i
]);
CHECK_EQ
(
inputs
[
0
].
dims_
[
i
],
inputs
[
3
].
dims_
[
i
]);
CHECK_EQ
(
inputs
[
0
].
dims_
[
i
],
outputs
[
0
].
dims_
[
i
]);
}
size_t
samples
=
inputs
[
0
].
dims_
[
0
];
size_t
channels
=
inputs
[
0
].
dims_
[
1
];
size_t
height
=
inputs
[
0
].
dims_
[
2
];
size_t
width
=
inputs
[
0
].
dims_
[
3
];
CrossMapNormalGrad
<
Device
>
(
outputs
[
0
].
getData
(),
inputs
[
0
].
getData
(),
inputs
[
1
].
getData
(),
inputs
[
2
].
getData
(),
inputs
[
3
].
getData
(),
samples
,
channels
,
height
,
width
,
size_
,
scale_
,
pow_
);
}
private:
size_t
size_
;
real
scale_
;
real
pow_
;
};
REGISTER_TYPED_FUNC
(
CrossMapNormal
,
CPU
,
CrossMapNormalFunc
);
REGISTER_TYPED_FUNC
(
CrossMapNormal
,
GPU
,
CrossMapNormalFunc
);
REGISTER_TYPED_FUNC
(
CrossMapNormalGrad
,
CPU
,
CrossMapNormalGradFunc
);
REGISTER_TYPED_FUNC
(
CrossMapNormalGrad
,
GPU
,
CrossMapNormalGradFunc
);
}
// namespace paddle
paddle/math/cross_map_normal_op.h
浏览文件 @
d2d00106
...
...
@@ -15,7 +15,6 @@ limitations under the License. */
#pragma once
#include "Function.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
...
...
@@ -30,34 +29,19 @@ void CrossMapNormal(real* outputs,
size_t
size
,
real
scale
,
real
pow
);
#if 0
template <DeviceType Device>
struct CrossMapNormal {
void operator()(typename MatrixT<Device>::type& outputs,
typename MatrixT<Device>::type& denoms,
typename MatrixT<Device>::type& inputs,
size_t channels,
size_t imgSizeH,
size_t imgSizeW,
size_t sizeX,
real scale,
real pow);
};
#endif
template
<
DeviceType
Device
>
struct
CrossMapNormalGrad
{
void
operator
()(
typename
MatrixT
<
Device
>::
type
&
inputsGrad
,
typename
MatrixT
<
Device
>::
type
&
inputsValue
,
typename
MatrixT
<
Device
>::
type
&
outputsGrad
,
typename
MatrixT
<
Device
>::
type
&
outputsValue
,
typename
MatrixT
<
Device
>::
type
&
denoms
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
real
scale
,
real
pow
);
};
void
CrossMapNormalGrad
(
real
*
inputsGrad
,
real
*
inputsValue
,
real
*
outputsValue
,
real
*
outputsGrad
,
real
*
denoms
,
size_t
numSamples
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
size
,
real
scale
,
real
pow
);
}
// namespace paddle
paddle/math/cross_map_normal_op_gpu.cu
浏览文件 @
d2d00106
...
...
@@ -131,48 +131,26 @@ __global__ void KeCMRNormDiff(size_t imageSize, const real* bottom_data,
}
template
<
>
void
CrossMapNormalGrad
<
DEVICE_TYPE_GPU
>::
operator
()(
GpuMatrix
&
inputsGrad
,
GpuMatrix
&
inputsValue
,
GpuMatrix
&
outputsGrad
,
GpuMatrix
&
outputsValue
,
GpuMatrix
&
denoms
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
real
scale
,
real
pow
)
{
CHECK
(
inputsGrad
.
isContiguous
());
CHECK
(
outputsGrad
.
isContiguous
());
CHECK
(
denoms
.
isContiguous
());
CHECK
(
inputsValue
.
isContiguous
());
CHECK
(
outputsValue
.
isContiguous
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
outputsGrad
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
outputsGrad
.
getWidth
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
denoms
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
denoms
.
getWidth
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
inputsValue
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
inputsValue
.
getWidth
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
outputsValue
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
outputsValue
.
getWidth
());
size_t
numSample
=
inputsGrad
.
getHeight
();
size_t
numCols
=
inputsGrad
.
getWidth
();
CHECK
(
imgSizeH
*
imgSizeW
*
channels
==
numCols
);
size_t
imageSize
=
numSample
*
imgSizeH
*
imgSizeW
;
real
*
inputsGradData
=
inputsGrad
.
getData
();
real
*
inputsData
=
inputsValue
.
getData
();
real
*
denomsData
=
denoms
.
getData
();
real
*
outputsGradData
=
outputsGrad
.
getData
();
real
*
outputsData
=
outputsValue
.
getData
();
void
CrossMapNormalGrad
<
DEVICE_TYPE_GPU
>
(
real
*
inputsGrad
,
real
*
inputsValue
,
real
*
outputsValue
,
real
*
outputsGrad
,
real
*
denoms
,
size_t
numSamples
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
size
,
real
scale
,
real
pow
)
{
size_t
imageSize
=
numSamples
*
height
*
width
;
int
blockSize
=
1024
;
int
gridSize
=
(
imageSize
+
1024
-
1
)
/
1024
;
KeCMRNormDiff
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
imageSize
,
inputs
Data
,
outputsData
,
denomsData
,
outputsGradData
,
channels
,
imgSizeH
,
imgSizeW
,
sizeX
,
-
pow
,
2.0
f
*
pow
*
scale
,
inputsGradData
);
CHECK_SYNC
(
"
KeCMRNormDiff
"
);
(
imageSize
,
inputs
Value
,
outputsValue
,
denoms
,
outputsGrad
,
channels
,
height
,
width
,
size
,
-
pow
,
2.0
f
*
pow
*
scale
,
inputsGrad
);
CHECK_SYNC
(
"
CrossMapNormalGrad
"
);
}
}
// namespace paddle
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
d2d00106
...
...
@@ -19,12 +19,11 @@ limitations under the License. */
#include <gtest/gtest.h>
#include "TensorCheck.h"
#include "paddle/gserver/tests/TestUtil.h"
#include "paddle/math/Function.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
#include "paddle/utils/Stat.h"
#include "TensorCheck.h"
#include "paddle/math/cross_map_normal_op.h"
#include "paddle/
math/Function
.h"
#include "paddle/
utils/Stat
.h"
#include "paddle/utils/Util.h"
using
namespace
paddle
;
// NOLINT
...
...
@@ -1282,12 +1281,6 @@ void testCrossMapNormalFwd(
inputsGpu
.
copyFrom
(
inputs
);
outputsGpu
.
copyFrom
(
outputs
);
#if 0
FuncConfig config;
config.set("size", (size_t)sizeX);
config.set("scale", scale);
config.set("pow", pow);
#endif
FunctionBase
*
cpu
=
FunctionBase
::
funcRegistrar_
.
createByType
(
FUNC_NAME
(
CrossMapNormal
,
CPU
));
FunctionBase
*
gpu
=
...
...
@@ -1311,22 +1304,6 @@ void testCrossMapNormalFwd(
{
Tensor
(
inputsGpu
.
getData
(),
dims
)},
{
Tensor
(
outputsGpu
.
getData
(),
dims
),
Tensor
(
denomsGpu
.
getData
(),
dims
)},
{});
#if 0
CrossMapNormal<DEVICE_TYPE_CPU> cpuCross;
cpuCross(
outputs, denoms, inputs, channels, imgSizeH, imgSizeW, sizeX, scale, pow);
CrossMapNormal<DEVICE_TYPE_GPU> gpuCross;
gpuCross(outputsGpu,
denomsGpu,
inputsGpu,
channels,
imgSizeH,
imgSizeW,
sizeX,
scale,
pow);
#endif
TensorCheckErr
(
outputs
,
outputsGpu
);
TensorCheckErr
(
denoms
,
denomsGpu
);
...
...
@@ -1381,6 +1358,35 @@ void testCrossMapNormalBwd(
outputsValueGpu
.
copyFrom
(
outputsValue
);
inputsGradGpu
.
copyFrom
(
inputsGrad
);
FunctionBase
*
cpu
=
FunctionBase
::
funcRegistrar_
.
createByType
(
FUNC_NAME
(
CrossMapNormalGrad
,
CPU
));
FunctionBase
*
gpu
=
FunctionBase
::
funcRegistrar_
.
createByType
(
FUNC_NAME
(
CrossMapNormalGrad
,
GPU
));
cpu
->
init
(
FuncConfig
()
.
set
(
"size"
,
(
size_t
)
sizeX
)
.
set
(
"scale"
,
scale
)
.
set
(
"pow"
,
pow
));
gpu
->
init
(
FuncConfig
()
.
set
(
"size"
,
(
size_t
)
sizeX
)
.
set
(
"scale"
,
scale
)
.
set
(
"pow"
,
pow
));
Dims
dims
{
(
size_t
)
numSamples
,
(
size_t
)
channels
,
(
size_t
)
imgSizeH
,
(
size_t
)
imgSizeW
};
cpu
->
calc
({
Tensor
(
inputsValue
.
getData
(),
dims
),
Tensor
(
outputsValue
.
getData
(),
dims
),
Tensor
(
outputsGrad
.
getData
(),
dims
),
Tensor
(
denoms
.
getData
(),
dims
)},
{
Tensor
(
inputsGrad
.
getData
(),
dims
)},
{});
gpu
->
calc
({
Tensor
(
inputsValueGpu
.
getData
(),
dims
),
Tensor
(
outputsValueGpu
.
getData
(),
dims
),
Tensor
(
outputsGradGpu
.
getData
(),
dims
),
Tensor
(
denomsGpu
.
getData
(),
dims
)},
{
Tensor
(
inputsGradGpu
.
getData
(),
dims
)},
{});
#if 0
CrossMapNormalGrad<DEVICE_TYPE_CPU> cpuCross;
cpuCross(inputsGrad,
inputsValue,
...
...
@@ -1406,6 +1412,7 @@ void testCrossMapNormalBwd(
sizeX,
scale,
pow);
#endif
TensorCheckErr
(
inputsGrad
,
inputsGradGpu
);
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录