ascend_optimizer.py 10.4 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
from collections import namedtuple

import hccl.manage.api as hccl

19
import paddle.framework.core as core
20
from paddle.distributed import fleet
21 22 23
from paddle.optimizer import Optimizer

from . import ascend_parser
24 25

HcomGroupConfig = namedtuple('HcomGroupConfig', ['name', 'nranks', 'rank_ids'])
26

27 28
__all__ = []

29

30
class AscendIRParser:
31
    def __init__(self, auto_dp=False, world_rank_size=1):
32
        self.graph_idx = 0
33 34 35 36
        self.hcom_endpoints = {}
        self.groups_to_create = []
        self._auto_dp = auto_dp
        self._world_rank_size = world_rank_size
37 38 39 40 41 42 43

    def _construct_input_map(self, input_varlist):
        ret_map = {}
        ge_in_operator = []
        for id, var in enumerate(input_varlist):
            if var.is_data:  # input data
                ge_input = core.GEOperatorFactory.create_operator(
44 45
                    var.name, "Data"
                ).set_attr_int32("index", id)
46 47 48
                ret_map[var.name] = ge_input
                ge_in_operator.append(ge_input)
            else:  # param, learning ...
49
                ge_input = core.GEOperatorFactory.create_operator(
50 51
                    var.name, "Variable"
                )
52 53
                ge_input.update_output_desc(
                    "y",
54 55 56 57 58 59
                    core.GETensorDesc(
                        core.GEShape(var.shape),
                        core.GEFormat.FORMAT_ND,
                        core.GEDataType.DT_FLOAT,
                    ),
                )
60 61 62
                ret_map[var.name] = ge_input
        return ge_in_operator, ret_map

63 64
    def _endpoint_to_world_rank_id(self, endpoint):
        world_endpoints = fleet.worker_endpoints()
65 66 67 68 69 70
        assert (
            endpoint in world_endpoints
        ), "endpoint (%s) not in worker_endpoints (%s) " % (
            endpoint,
            fleet.world_device_ids(),
        )
71 72
        return world_endpoints.index(endpoint)

73
    def parse_op(self, op):
74 75 76 77 78 79 80 81
        if op.type == 'c_gen_nccl_id':
            endpoint = op.attr("endpoint")
            other_endpoints = op.attr("other_endpoints")
            rank = op.attr("rank")

            nccl_id = op.output_arg_names[0]

            # c_gen_nccl_id operator splits endpoints into local endpoint and other_endpoints
82
            # we should combine these together to produce world_rank_ids
83 84 85
            self.hcom_endpoints[nccl_id] = other_endpoints[:]
            self.hcom_endpoints[nccl_id].insert(rank, endpoint)

86 87 88 89
            print(
                "nccl_id (%s) registered endpoints %s"
                % (nccl_id, self.hcom_endpoints[nccl_id])
            )
90 91 92
        elif op.type == 'c_comm_init':
            nccl_id = op.input_arg_names[0]
            nranks = op.attr("nranks")
93 94 95
            assert nranks == len(
                self.hcom_endpoints[nccl_id]
            ), "nranks doesn't match endpoint count"
96 97 98 99 100 101 102 103 104
            rank = op.attr("rank")
            ring_id = op.attr("ring_id")

            group_name = "hcom_group_" + str(ring_id)
            global_rank_ids = [
                self._endpoint_to_world_rank_id(endpoint)
                for endpoint in self.hcom_endpoints[nccl_id]
            ]
            self.groups_to_create.append(
105 106 107 108 109 110 111 112
                HcomGroupConfig(
                    name=group_name, nranks=nranks, rank_ids=global_rank_ids
                )
            )
            print(
                "append to create group: %s, with rank_ids: %s"
                % (group_name, global_rank_ids)
            )
113
        elif op.type in ascend_parser.registerd_op:
114
            op_parser = self.parser_factory.create_parse(
115 116
                ascend_parser.registerd_op[op.type]
            )
117 118
            op_parser.apply(op)
        else:
119 120 121 122 123 124 125 126 127
            assert (
                False
            ), "Op[%s] has not been registered, so we have to skip it" % (
                op.type
            )

    def _parse_program(
        self, graph_name, program, input_varlist=[], fetch_list=[]
    ):
128 129 130 131 132 133 134 135 136 137 138 139 140 141
        begin_graph_idx = self.graph_idx
        ge_in_operator = []
        ge_out_operator = []
        self.var2geop = {}

        block = program.global_block()
        if len(block.ops) == 0:
            print("There is no ops in program %s" % (graph_name))
            return []

        graph = core.GEGraph(graph_name)

        ge_in_operator, self.var2geop = self._construct_input_map(input_varlist)

142
        self.parser_factory = ascend_parser.AscendParserFactory(
143 144
            graph, self.var2geop
        )
145 146 147 148 149 150 151 152 153 154
        for i, curop in list(enumerate(block.ops)):
            self.parse_op(curop)

        # Set fetch_var for GE
        for e in fetch_list:
            name = e
            if not isinstance(e, str):
                name = e.name
            ge_out_operator.append(self.var2geop[name])

155
        # (Debug) If you want to print back prop vars, append/assign the varname in ge_out_operator here, such as:
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        # if graph_name == "main":
        #     ge_out_operator.append(self.var2geop["reduce_sum_0.tmp_0@GRAD"])

        # Add ops that may be input of a graph, such as const.
        for varname, geop in self.var2geop.items():
            if varname.startswith("geinput"):
                ge_in_operator.append(geop)

        graph.set_inputs(ge_in_operator).set_outputs(ge_out_operator)

        # Remove ops of origin program
        op_num = len(block.ops)
        for i in range(op_num - 1, -1, -1):
            block._remove_op(i)

        input_varlist = [var for var in input_varlist if var.is_data]

173 174 175 176 177 178
        block.append_op(
            type="ascend_trigger",
            inputs={"FeedList": input_varlist},
            outputs={"FetchList": fetch_list},
            attrs={'graph_idx': self.graph_idx},
        )
179 180 181
        self.graph_idx += 1
        return graph

182 183 184
    def parse_program(
        self, startup_program, main_program, input_varlist, fetch_list
    ):
185
        startup_graph = self._parse_program("startup", startup_program)
186 187 188
        main_graph = self._parse_program(
            "main", main_program, input_varlist, fetch_list
        )
189
        if self._auto_dp and self._world_rank_size > 1:
190 191 192
            assert (
                len(self.groups_to_create) == 0
            ), "can't parse program under auto_dp mode"
193 194

            from paddle.distributed import fleet
195

196
            self.groups_to_create.append(
197 198 199 200 201 202
                HcomGroupConfig(
                    name="hcom_group_0",
                    nranks=fleet.world_size(),
                    rank_ids=[x for x in range(fleet.world_size())],
                )
            )
203

204 205 206 207 208 209 210 211 212
        return startup_graph, main_graph


# AscendOptimizer is a wrapper for basic optimizer now
# We will make it part of fleet meta_optimizer in the future
class AscendOptimizer(Optimizer):
    def __init__(self, optimizer, fetch_list=[]):
        self.inner_opt = optimizer
        self.fetch_list = fetch_list
213
        self.ascend_instance = None
214 215

    def __del__(self):
216 217 218
        print("begin AscendOptimizer del")
        if self.ascend_instance is not None:
            self.ascend_instance.destroy_global_resources()
219
        core.ge_finalize()
220
        print("end AscendOptimizer del")
221 222 223 224 225 226 227 228 229 230 231

    def _can_apply(self):
        if not self.user_defined_strategy.ascend:
            return False
        # TODO(hutuxian): other check here
        return True

    def _disable_strategy(self, dist_strategy):
        dist_strategy.ascend = False
        dist_strategy.ascend_configs = {}

232
    def _get_input_varlist(self, program):
233 234 235 236 237 238
        ret_list = []
        for var in program.list_vars():
            if var.is_data or var.persistable:
                ret_list.append(var)
        return ret_list

239 240 241 242
    def _set_auxiliary_var(self, key, val):
        super()._set_auxiliary_var(key, val)
        self.inner_opt._set_auxiliary_var(key, val)

243 244 245 246 247 248 249 250 251 252
    def minimize(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        auto_dp=False,
        rank_table_file=None,
        precision_mode="must_keep_origin_dtype",
    ):
253 254
        minimized = None
        if self.inner_opt:
255 256 257
            minimized = self.inner_opt.minimize(
                loss, startup_program=startup_program
            )
258 259 260

        self.ascend_instance = core.AscendInstance()

261
        from paddle.distributed import fleet
262

263 264
        if auto_dp and fleet.world_size() > 1:
            from paddle.fluid.transpiler import ascend_transpiler
265 266 267 268

            t = ascend_transpiler.AscendTranspiler(
                startup_program, loss.block.program
            )
269
            t.transpile()
270
            # print(loss.block.program)
271

272 273
        # Config about Graph Engine can be found in https://support.huaweicloud.com/
        config = {
274
            "ge.exec.deviceId": str(fleet.local_device_ids()),
275
            "ge.graphRunMode": "1",
276
            "ge.exec.precision_mode": precision_mode,
277
        }
278 279 280 281 282 283 284
        # if multi trainers
        if rank_table_file and fleet.world_size() > 1:
            config["ge.exec.rankTableFile"] = rank_table_file
            config["ge.exec.rankId"] = str(fleet.worker_index())
            config["ge.exec.isUseHcom"] = "1"
            config["ge.exec.deployMode"] = "0"
        print("ge_initialize config:", config)
285 286 287 288 289 290
        core.ge_initialize(config)

        # Init Session
        self.ascend_instance.init_global_resources()

        main_block = loss.block
291 292 293
        self.parser = AscendIRParser(
            auto_dp=auto_dp, world_rank_size=fleet.world_size()
        )
294 295

        input_varlist = self._get_input_varlist(main_block.program)
296 297

        startup_graph, main_graph = self.parser.parse_program(
298 299
            startup_program, main_block.program, input_varlist, self.fetch_list
        )
300

301
        for cfg in self.parser.groups_to_create:
302 303 304 305
            print(
                "create group (%s), nranks: %d, rank_ids: %s"
                % (cfg.name, cfg.nranks, cfg.rank_ids)
            )
306 307
            hccl.create_group(cfg.name, cfg.nranks, cfg.rank_ids)

308 309 310 311
        self.ascend_instance.add_ascend_subgraph(0, startup_graph)
        self.ascend_instance.add_ascend_subgraph(1, main_graph)

        return minimized