ascend_optimizer.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16 17 18 19
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Optimizer
import paddle.fluid.core as core
import numpy as np
20 21 22 23 24 25
from . import ascend_parser
from paddle.distributed import fleet
import hccl.manage.api as hccl
from collections import namedtuple

HcomGroupConfig = namedtuple('HcomGroupConfig', ['name', 'nranks', 'rank_ids'])
26 27 28


class AscendIRParser(object):
29
    def __init__(self, auto_dp=False, world_rank_size=1):
30
        self.graph_idx = 0
31 32 33 34
        self.hcom_endpoints = {}
        self.groups_to_create = []
        self._auto_dp = auto_dp
        self._world_rank_size = world_rank_size
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

    def _construct_input_map(self, input_varlist):
        ret_map = {}
        ge_in_operator = []
        for id, var in enumerate(input_varlist):
            if var.is_data:  # input data
                ge_input = core.GEOperatorFactory.create_operator(
                    var.name, "Data").set_attr_int32("index", id)
                ret_map[var.name] = ge_input
                ge_in_operator.append(ge_input)
            else:  # param, learning ...
                ge_input = core.GEOperatorFactory.create_operator(var.name,
                                                                  "Variable")
                ge_input.update_output_desc("y",
                                            core.GETensorDesc(
                                                core.GEShape(var.shape),
                                                core.GEFormat.FORMAT_ND,
                                                core.GEDataType.DT_FLOAT))
                ret_map[var.name] = ge_input
        return ge_in_operator, ret_map

56 57 58 59 60 61
    def _endpoint_to_world_rank_id(self, endpoint):
        world_endpoints = fleet.worker_endpoints()
        assert endpoint in world_endpoints, "endpoint (%s) not in worker_endpoints (%s) " % (
            endpoint, fleet.world_device_ids())
        return world_endpoints.index(endpoint)

62
    def parse_op(self, op):
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        if op.type == 'c_gen_nccl_id':
            endpoint = op.attr("endpoint")
            other_endpoints = op.attr("other_endpoints")
            rank = op.attr("rank")

            nccl_id = op.output_arg_names[0]

            # c_gen_nccl_id operator splits endpoints into local endpoint and other_endpoints
            # we should combine these together to produce world_rank_ids 
            self.hcom_endpoints[nccl_id] = other_endpoints[:]
            self.hcom_endpoints[nccl_id].insert(rank, endpoint)

            print("nccl_id (%s) registered endpoints %s" %
                  (nccl_id, self.hcom_endpoints[nccl_id]))
        elif op.type == 'c_comm_init':
            nccl_id = op.input_arg_names[0]
            nranks = op.attr("nranks")
            assert nranks == len(self.hcom_endpoints[
                nccl_id]), "nranks doesn't match endpoint count"
            rank = op.attr("rank")
            ring_id = op.attr("ring_id")

            group_name = "hcom_group_" + str(ring_id)
            global_rank_ids = [
                self._endpoint_to_world_rank_id(endpoint)
                for endpoint in self.hcom_endpoints[nccl_id]
            ]
            self.groups_to_create.append(
                HcomGroupConfig(
                    name=group_name, nranks=nranks, rank_ids=global_rank_ids))
            print("append to create group: %s, with rank_ids: %s" %
                  (group_name, global_rank_ids))
        elif op.type in ascend_parser.registerd_op:
96 97 98 99
            op_parser = self.parser_factory.create_parse(
                ascend_parser.registerd_op[op.type])
            op_parser.apply(op)
        else:
100 101
            assert False, "Op[%s] has not been registered, so we have to skip it" % (
                op.type)
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    def _parse_program(self,
                       graph_name,
                       program,
                       input_varlist=[],
                       fetch_list=[]):
        begin_graph_idx = self.graph_idx
        ge_in_operator = []
        ge_out_operator = []
        self.var2geop = {}

        block = program.global_block()
        if len(block.ops) == 0:
            print("There is no ops in program %s" % (graph_name))
            return []

        graph = core.GEGraph(graph_name)

        ge_in_operator, self.var2geop = self._construct_input_map(input_varlist)

        self.parser_factory = ascend_parser.AscendParserFactory(graph,
                                                                self.var2geop)
        for i, curop in list(enumerate(block.ops)):
            self.parse_op(curop)

        # Set fetch_var for GE
        for e in fetch_list:
            name = e
            if not isinstance(e, str):
                name = e.name
            ge_out_operator.append(self.var2geop[name])

134
        # (Debug) If you want to print back prop vars, append/assign the varname in ge_out_operator here, such as:
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        # if graph_name == "main":
        #     ge_out_operator.append(self.var2geop["reduce_sum_0.tmp_0@GRAD"])

        # Add ops that may be input of a graph, such as const.
        for varname, geop in self.var2geop.items():
            if varname.startswith("geinput"):
                ge_in_operator.append(geop)

        graph.set_inputs(ge_in_operator).set_outputs(ge_out_operator)

        # Remove ops of origin program
        op_num = len(block.ops)
        for i in range(op_num - 1, -1, -1):
            block._remove_op(i)

        input_varlist = [var for var in input_varlist if var.is_data]

        block.append_op(
            type="ascend_trigger",
            inputs={"FeedList": input_varlist},
            outputs={"FetchList": fetch_list},
            attrs={'graph_idx': self.graph_idx})
        self.graph_idx += 1
        return graph

    def parse_program(self, startup_program, main_program, input_varlist,
                      fetch_list):
        startup_graph = self._parse_program("startup", startup_program)
        main_graph = self._parse_program("main", main_program, input_varlist,
                                         fetch_list)
165 166 167 168 169 170 171 172 173 174 175
        if self._auto_dp and self._world_rank_size > 1:
            assert len(self.groups_to_create
                       ) == 0, "can't parse program under auto_dp mode"

            from paddle.distributed import fleet
            self.groups_to_create.append(
                HcomGroupConfig(
                    name="hcom_group_0",
                    nranks=fleet.world_size(),
                    rank_ids=[x for x in range(fleet.world_size())]))

176 177 178 179 180 181 182 183 184
        return startup_graph, main_graph


# AscendOptimizer is a wrapper for basic optimizer now
# We will make it part of fleet meta_optimizer in the future
class AscendOptimizer(Optimizer):
    def __init__(self, optimizer, fetch_list=[]):
        self.inner_opt = optimizer
        self.fetch_list = fetch_list
185
        self.ascend_instance = None
186 187

    def __del__(self):
188 189 190
        print("begin AscendOptimizer del")
        if self.ascend_instance is not None:
            self.ascend_instance.destroy_global_resources()
191
        core.ge_finalize()
192
        print("end AscendOptimizer del")
193 194 195 196 197 198 199 200 201 202 203

    def _can_apply(self):
        if not self.user_defined_strategy.ascend:
            return False
        # TODO(hutuxian): other check here
        return True

    def _disable_strategy(self, dist_strategy):
        dist_strategy.ascend = False
        dist_strategy.ascend_configs = {}

204
    def _get_input_varlist(self, program):
205 206 207 208 209 210 211 212 213 214
        ret_list = []
        for var in program.list_vars():
            if var.is_data or var.persistable:
                ret_list.append(var)
        return ret_list

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
215 216
                 no_grad_set=None,
                 auto_dp=False,
217 218
                 rank_table_file=None,
                 precision_mode="must_keep_origin_dtype"):
219 220 221 222
        minimized = None
        if self.inner_opt:
            minimized = self.inner_opt.minimize(
                loss, startup_program=startup_program)
223 224 225

        self.ascend_instance = core.AscendInstance()

226 227 228 229 230 231 232 233
        from paddle.distributed import fleet
        if auto_dp and fleet.world_size() > 1:
            from paddle.fluid.transpiler import ascend_transpiler
            t = ascend_transpiler.AscendTranspiler(startup_program,
                                                   loss.block.program)
            t.transpile()
            #print(loss.block.program)

234 235
        # Config about Graph Engine can be found in https://support.huaweicloud.com/
        config = {
236
            "ge.exec.deviceId": str(fleet.local_device_ids()),
237
            "ge.graphRunMode": "1",
238
            "ge.exec.precision_mode": precision_mode,
239
        }
240 241 242 243 244 245 246
        # if multi trainers
        if rank_table_file and fleet.world_size() > 1:
            config["ge.exec.rankTableFile"] = rank_table_file
            config["ge.exec.rankId"] = str(fleet.worker_index())
            config["ge.exec.isUseHcom"] = "1"
            config["ge.exec.deployMode"] = "0"
        print("ge_initialize config:", config)
247 248 249 250 251 252
        core.ge_initialize(config)

        # Init Session
        self.ascend_instance.init_global_resources()

        main_block = loss.block
253 254 255 256
        self.parser = AscendIRParser(
            auto_dp=auto_dp, world_rank_size=fleet.world_size())

        input_varlist = self._get_input_varlist(main_block.program)
257 258 259 260

        startup_graph, main_graph = self.parser.parse_program(
            startup_program, main_block.program, input_varlist, self.fetch_list)

261 262 263 264 265
        for cfg in self.parser.groups_to_create:
            print("create group (%s), nranks: %d, rank_ids: %s" %
                  (cfg.name, cfg.nranks, cfg.rank_ids))
            hccl.create_group(cfg.name, cfg.nranks, cfg.rank_ids)

266 267 268 269
        self.ascend_instance.add_ascend_subgraph(0, startup_graph)
        self.ascend_instance.add_ascend_subgraph(1, main_graph)

        return minimized