sequence_pool_op.h 4.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <string>
17

Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
21
#include "paddle/phi/kernels/funcs/math_function.h"
22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

Q
QI JUN 已提交
29
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
30
class SequencePoolKernel : public framework::OpKernel<T> {
31 32 33
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
34
    auto* out = context.Output<LoDTensor>("Out");
D
dzhwinter 已提交
35
    std::string pooltype = context.Attr<std::string>("pooltype");
36
    T pad_value = static_cast<T>(context.Attr<float>("pad_value"));
37 38

    auto dims = in->dims();
Q
Qiao Longfei 已提交
39
    auto lod = in->lod();
40
    auto lod_level = lod.size();
Q
Qiao Longfei 已提交
41
    // InferShape by lod
42 43 44 45
    PADDLE_ENFORCE_GT(
        lod_level, 0,
        platform::errors::InvalidArgument("Input(X) Tensor of SequencePoolOp "
                                          "does not contain LoD information."));
46
    PADDLE_ENFORCE_LE(lod_level, 2UL,
47 48 49 50
                      platform::errors::InvalidArgument(
                          "The lod level of input shall be no more than 2."
                          "Received lod level is %d.",
                          lod_level));
Q
Qiao Longfei 已提交
51 52
    PADDLE_ENFORCE_GE(
        dims[0],
53
        /*batch size = */ static_cast<int64_t>(lod[lod_level - 1].size() - 1),
54 55 56 57 58
        platform::errors::InvalidArgument(
            "The first dimension of Input(X) must be large than batch size."
            "But received first dimension of Input(X) is %d, while batch"
            "size is %d.",
            dims[0], static_cast<int64_t>(lod[lod_level - 1].size() - 1)));
59 60
    if (lod_level > 1UL) {
      PADDLE_ENFORCE_EQ(lod[0][lod[0].size() - 1], lod[1].size() - 1,
61 62
                        platform::errors::InvalidArgument(
                            "The input lod information is illegal."));
63 64 65 66 67
      framework::LoD out_lod;
      out_lod.push_back(lod[0]);
      out->set_lod(out_lod);
    }
    dims[0] = lod[lod_level - 1].size() - 1;
Q
Qiao Longfei 已提交
68
    out->Resize({dims});
69
    out->mutable_data<T>(context.GetPlace());
J
Jacek Czaja 已提交
70 71
    Tensor* index = nullptr;

72 73
    bool is_test =
        context.HasAttr("is_test") ? context.Attr<bool>("is_test") : false;
J
Jacek Czaja 已提交
74 75 76 77 78 79 80

    // Do not create index buffer for inference (is_test) mode
    // TODO(jczaja): Skip index buffer creation for other devices eg. GPU
    if (pooltype == "MAX" &&
        (is_test == false ||
         platform::is_cpu_place(context.GetPlace()) == false)) {
      index = context.Output<Tensor>("MaxIndex");
81 82
      index->Resize({dims});
      index->mutable_data<int>(context.GetPlace());
83
    }
D
dzhwinter 已提交
84
    math::SequencePoolFunctor<DeviceContext, T> pool;
85 86
    pool(context.template device_context<DeviceContext>(), pooltype, pad_value,
         *in, out, is_test, index);
87 88 89
  }
};

Q
QI JUN 已提交
90
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
91
class SequencePoolGradKernel : public framework::OpKernel<T> {
92 93
 public:
  void Compute(const framework::ExecutionContext& context) const override {
94
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
95
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
96
    std::string pooltype = context.Attr<std::string>("pooltype");
D
dzhwinter 已提交
97
    const Tensor* index = nullptr;
98
    if (pooltype == "MAX") {
D
dzhwinter 已提交
99
      index = context.Input<Tensor>("MaxIndex");
100
    }
D
dzhwinter 已提交
101 102 103 104
    in_g->mutable_data<T>(context.GetPlace());
    math::SequencePoolGradFunctor<DeviceContext, T> pool;
    pool(context.template device_context<DeviceContext>(), pooltype, *out_g,
         in_g, index);
105 106 107 108 109
  }
};

}  // namespace operators
}  // namespace paddle