fused_feedforward_op.cc 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include <utility>
#include <vector>
18

19 20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/matmul_v2_op.h"
22
#include "paddle/phi/kernels/funcs/blas/blas.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

class FusedFeedForwardOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "fused_feedforward");
    OP_INOUT_CHECK(context->HasInput("Linear1Weight"), "Input", "Linear1Weight",
                   "fused_feedforward");
    OP_INOUT_CHECK(context->HasInput("Linear2Weight"), "Input", "Linear2Weight",
                   "fused_feedforward");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out",
                   "fused_feedforward");
    OP_INOUT_CHECK(context->HasOutput("Dropout1Mask"), "Output", "Dropout1Mask",
                   "fused_feedforward");
    OP_INOUT_CHECK(context->HasOutput("Dropout2Mask"), "Output", "Dropout2Mask",
                   "fused_feedforward");
    OP_INOUT_CHECK(context->HasOutput("Linear1Out"), "Output", "Linear1Out",
                   "fused_feedforward");
    OP_INOUT_CHECK(context->HasOutput("Dropout1Out"), "Output", "Dropout1Out",
                   "fused_feedforward");
    OP_INOUT_CHECK(context->HasOutput("Dropout2Out"), "Output", "Dropout2Out",
                   "fused_feedforward");

    auto dim_x = context->GetInputDim("X");
53
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
54
        RowMatrixFromVector(dim_x), 0, false);
55 56 57 58 59 60 61 62 63 64
    // verify for the pre layer_norm, the feature size must be larger than 1
    PADDLE_ENFORCE_GT(
        mat_dim_x.width_, static_cast<size_t>(1),
        platform::errors::InvalidArgument("Product from the X shape[1] to "
                                          "shape[n-1] must be larger than 1!"));
    auto dim_Linear1Weight = context->GetInputDim("Linear1Weight");
    auto tmp_dim_x = dim_x;
    tmp_dim_x[dim_x.size() - 1] =
        dim_Linear1Weight[dim_Linear1Weight.size() - 1];
    context->SetOutputDim("Out", dim_x);
L
Li Min 已提交
65
    if (context->Attrs().Get<bool>("is_test") == false) {
66 67 68 69 70 71
      context->SetOutputDim("Dropout1Mask", tmp_dim_x);
    }
    context->SetOutputDim("Dropout1Out", tmp_dim_x);
    context->SetOutputDim("Linear1Out", tmp_dim_x);
    context->SetOutputDim("Dropout2Out", dim_x);

L
Li Min 已提交
72
    if (context->Attrs().Get<bool>("is_test") == false) {
73 74 75
      context->SetOutputDim("Dropout2Mask", dim_x);
    }
    framework::DDim mean_dim =
76
        phi::make_ddim({mat_dim_x.batch_size_ * mat_dim_x.height_});
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    bool pre_layer_norm = context->Attrs().Get<bool>("pre_layer_norm");
    if (pre_layer_norm) {
      OP_INOUT_CHECK(context->HasOutput("Ln1Mean"), "Output", "Ln1Mean",
                     "fused_feedforward");
      OP_INOUT_CHECK(context->HasOutput("Ln1Variance"), "Output", "Ln1Variance",
                     "fused_feedforward");
      OP_INOUT_CHECK(context->HasOutput("Ln1Out"), "Output", "Ln1Out",
                     "fused_feedforward");
      context->SetOutputDim("Ln1Out", dim_x);
      context->SetOutputDim("Ln1Mean", mean_dim);
      context->SetOutputDim("Ln1Variance", mean_dim);
    } else {
      OP_INOUT_CHECK(context->HasOutput("Ln2Mean"), "Output", "Ln2Mean",
                     "fused_feedforward");
      OP_INOUT_CHECK(context->HasOutput("Ln2Variance"), "Output", "Ln2Variance",
                     "fused_feedforward");
      context->SetOutputDim("Ln2Mean", mean_dim);
      context->SetOutputDim("Ln2Variance", mean_dim);
    }
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    context->ShareLoD("X", "Out");
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class FusedFeedForwardOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input of FusedFeedForward op");
    AddInput(
        "Dropout1Seed",
        "The seed of first dropout op, it has higher priority than the attr "
        "fix_seed and seed")
        .AsDispensable();
    AddInput(
        "Dropout2Seed",
        "The seed of second dropout op, it has higher priority than the attr "
        "fix_seed and seed")
        .AsDispensable();

    AddInput("Linear1Weight", "The linear1 weight of FusedFeedForward op");
    AddInput("Linear1Bias", "The linear1 bias of FusedFeedForward op")
        .AsDispensable();
    AddInput("Linear2Weight", "The linear2 weight of FusedFeedForward op");
    AddInput("Linear2Bias", "The linear2 bias input of FusedFeedForward op")
        .AsDispensable();
    AddInput("Ln1Scale", "The layer_norm1 scale of FusedFeedForward op")
        .AsDispensable();
    AddInput("Ln1Bias", "The layer_norm1 bias of FusedFeedForward op")
        .AsDispensable();
    AddInput("Ln2Scale", "The layer_norm2 scale of FusedFeedForward op")
        .AsDispensable();
    AddInput("Ln2Bias", "The layer_norm2 bias of FusedFeedForward op")
        .AsDispensable();
    AddOutput("Out", "The output of FusedFeedForward op");
    AddOutput("Dropout1Mask", "The mask of dropout1").AsIntermediate();
    AddOutput("Dropout2Mask", "The mask of dropout2").AsIntermediate();
    AddOutput("Ln1Mean", "The mean of layer_norm1").AsIntermediate();
    AddOutput("Ln1Variance", "The variance of layer_norm1").AsIntermediate();
    AddOutput("Ln2Mean", "The mean of layer_nomr2").AsIntermediate();
    AddOutput("Ln2Variance", "The variance of layer_norm2").AsIntermediate();
    AddOutput("Linear1Out", "The output of linear1").AsIntermediate();
    AddOutput("Ln1Out", "The output of layer_norm1").AsIntermediate();
    AddOutput("Dropout1Out", "The output of dropout1").AsIntermediate();
    AddOutput("Dropout2Out", "The output of dropout2").AsIntermediate();

    AddAttr<bool>("pre_layer_norm", "true is pre layernorm").SetDefault(false);
    AddAttr<float>("ln1_epsilon", "epsilon of pre layer_norm")
        .SetDefault(1e-5f);
    AddAttr<float>("ln2_epsilon", "epsilon of post layer_norm")
        .SetDefault(1e-5f);
    AddAttr<std::string>("act_method", "act_method").SetDefault("gelu");
    AddAttr<float>("dropout1_rate", "the dropout rate of first dropout")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(
              drop_p >= 0.0f && drop_p <= 1.0f, true,
              platform::errors::InvalidArgument(
                  "'dropout1_rate' must be between 0.0 and 1.0."));
        });
    AddAttr<float>("dropout2_rate", "the dropout rate of second dropout")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(
              drop_p >= 0.0f && drop_p <= 1.0f, true,
              platform::errors::InvalidArgument(
                  "'dropout2_rate' must be between 0.0 and 1.0."));
        });
    AddAttr<std::string>("dropout1_implementation",
                         "the dropout implementation of first dropout")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout1_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });
    AddAttr<std::string>("dropout2_implementation",
                         "the dropout implementation of second dropout")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout2_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });
L
Li Min 已提交
189
    AddAttr<bool>("is_test", "the is_test attribute of dropout")
190 191 192 193 194 195 196
        .SetDefault(false);
    AddAttr<bool>("dropout1_fix_seed", "the is_test of first dropout")
        .SetDefault(false);
    AddAttr<bool>("dropout2_fix_seed", "the is_test of second dropout")
        .SetDefault(false);
    AddAttr<int>("dropout1_seed", "Dropout1 random seed.").SetDefault(0);
    AddAttr<int>("dropout2_seed", "Dropout2 random seed.").SetDefault(0);
197
    AddAttr<bool>("add_residual", "Whether to add residual.").SetDefault(true);
198 199
    AddAttr<int>("ring_id", "ring id for tensor model parallel.")
        .SetDefault(-1);
200
    AddComment(R"DOC(
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  The fused_feedforward operator is the same as the following pseudo codes:

  residual = src;
  if (pre_layer_norm)
    ln1_out = layer_norm(src);
  else
    ln1_out = src;
  // linear 1
  out = linear(ln1_out);
  out = dropout(activation(out));
  // linear 2
  out = linear(out);
  if (add_residual)
    out = residual + dropout(out);
  else
    out = dropout(out);
  if (!pre_layer_norm)
    out = layer_norm(out);
  )DOC");
220 221 222
  }
};

223 224 225 226 227 228
class FusedFeedForwardOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {
L
Li Min 已提交
229
    PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false,
230 231
                      platform::errors::InvalidArgument(
                          "GradOp is only callable when is_test is false"));
232
    bool pre_layer_norm = ctx->Attrs().Get<bool>("pre_layer_norm");
233 234 235 236 237 238 239 240 241 242 243 244 245 246
    OP_INOUT_CHECK(ctx->HasInput("Dropout1Mask"), "Input", "Dropout1Mask",
                   "FusedFeedForwardGrad");
    OP_INOUT_CHECK(ctx->HasInput("Dropout2Mask"), "Input", "Dropout1Mask",
                   "FusedFeedForwardGrad");
    OP_INOUT_CHECK(ctx->HasInput("Linear1Out"), "Input", "Linear1Out",
                   "FusedFeedForwardGrad");
    OP_INOUT_CHECK(ctx->HasInput("Dropout1Out"), "Input", "Dropout1Out",
                   "FusedFeedForwardGrad");
    OP_INOUT_CHECK(ctx->HasInput("Dropout2Out"), "Input", "Dropout2Out",
                   "FusedFeedForwardGrad");
    OP_INOUT_CHECK(ctx->HasInput("Linear1Weight"), "Input", "Linear1Weight",
                   "FusedFeedForwardGrad");
    OP_INOUT_CHECK(ctx->HasInput("Linear2Weight"), "Input", "Linear2Weight",
                   "FusedFeedForwardGrad");
247 248 249 250 251 252 253 254 255 256 257 258 259
    if (pre_layer_norm) {
      OP_INOUT_CHECK(ctx->HasInput("Ln1Mean"), "Input", "Ln1Mean",
                     "FusedFeedForwardGrad");
      OP_INOUT_CHECK(ctx->HasInput("Ln1Variance"), "Input", "Ln1Variance",
                     "FusedFeedForwardGrad");
      OP_INOUT_CHECK(ctx->HasInput("Ln1Out"), "Input", "Ln1Out",
                     "FusedFeedForwardGrad");
    } else {
      OP_INOUT_CHECK(ctx->HasInput("Ln2Mean"), "Input", "Ln2Mean",
                     "FusedFeedForwardGrad");
      OP_INOUT_CHECK(ctx->HasInput("Ln2Variance"), "Input", "Ln2Variance",
                     "FusedFeedForwardGrad");
    }
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "FusedFeedForwardGrad");

    auto d_out_dim = ctx->GetInputDim(framework::GradVarName("Out"));
    ctx->SetOutputDim(framework::GradVarName("X"), d_out_dim);
    if (ctx->HasOutput(framework::GradVarName("Ln1Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Ln1Scale"),
                        ctx->GetInputDim("Ln1Scale"));
    }
    if (ctx->HasOutput(framework::GradVarName("Ln1Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Ln1Bias"),
                        ctx->GetInputDim("Ln1Bias"));
    }
    if (ctx->HasOutput(framework::GradVarName("Ln2Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Ln2Scale"),
                        ctx->GetInputDim("Ln2Scale"));
    }
    if (ctx->HasOutput(framework::GradVarName("Ln2Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Ln2Bias"),
                        ctx->GetInputDim("Ln2Bias"));
    }
    ctx->SetOutputDim(framework::GradVarName("Linear1Weight"),
                      ctx->GetInputDim("Linear1Weight"));
    if (ctx->HasOutput(framework::GradVarName("Linear1Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Linear1Bias"),
                        ctx->GetInputDim("Linear1Bias"));
    }
    ctx->SetOutputDim(framework::GradVarName("Linear2Weight"),
                      ctx->GetInputDim("Linear2Weight"));
    if (ctx->HasOutput(framework::GradVarName("Linear2Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Linear2Bias"),
                        ctx->GetInputDim("Linear2Bias"));
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
299
    auto input_data_type = framework::TransToProtoVarType(input->dtype());
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
class FusedFeedForwardOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("fused_feedforward_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetInput("Linear1Weight", this->Input("Linear1Weight"));
    op->SetInput("Linear1Bias", this->Input("Linear1Bias"));
    op->SetInput("Linear2Weight", this->Input("Linear2Weight"));
    op->SetInput("Dropout1Mask", this->Output("Dropout1Mask"));
    op->SetInput("Dropout2Mask", this->Output("Dropout2Mask"));
    op->SetInput("Linear1Out", this->Output("Linear1Out"));
    op->SetInput("Dropout1Out", this->Output("Dropout1Out"));
    op->SetInput("Dropout2Out", this->Output("Dropout2Out"));

323 324 325
    op->SetAttrMap(this->Attrs());
    bool pre_layer_norm = BOOST_GET_CONST(bool, op->GetAttr("pre_layer_norm"));

326
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    if (pre_layer_norm) {
      op->SetInput("Ln1Scale", this->Input("Ln1Scale"));
      op->SetInput("Ln1Bias", this->Input("Ln1Bias"));
      op->SetInput("Ln1Out", this->Output("Ln1Out"));
      op->SetInput("Ln1Mean", this->Output("Ln1Mean"));
      op->SetInput("Ln1Variance", this->Output("Ln1Variance"));
      op->SetOutput(framework::GradVarName("Ln1Scale"),
                    this->InputGrad("Ln1Scale"));
      op->SetOutput(framework::GradVarName("Ln1Bias"),
                    this->InputGrad("Ln1Bias"));
    } else {
      op->SetInput("Ln2Scale", this->Input("Ln2Scale"));
      op->SetInput("Ln2Bias", this->Input("Ln2Bias"));
      op->SetInput("Ln2Mean", this->Output("Ln2Mean"));
      op->SetInput("Ln2Variance", this->Output("Ln2Variance"));
      op->SetOutput(framework::GradVarName("Ln2Scale"),
                    this->InputGrad("Ln2Scale"));
      op->SetOutput(framework::GradVarName("Ln2Bias"),
                    this->InputGrad("Ln2Bias"));
    }
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    op->SetOutput(framework::GradVarName("Linear1Weight"),
                  this->InputGrad("Linear1Weight"));
    op->SetOutput(framework::GradVarName("Linear1Bias"),
                  this->InputGrad("Linear1Bias"));
    op->SetOutput(framework::GradVarName("Linear2Weight"),
                  this->InputGrad("Linear2Weight"));
    if (this->HasInput("Linear2Bias")) {
      op->SetInput("Linear2Bias", this->Input("Linear2Bias"));
      op->SetOutput(framework::GradVarName("Linear2Bias"),
                    this->InputGrad("Linear2Bias"));
    }
  }
};

template <typename T>
class FusedFeedForwardOpDoubleGradMaker
    : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {}
};
370 371 372 373 374
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_feedforward, ops::FusedFeedForwardOp,
375 376 377 378
                  ops::FusedFeedForwardOpMaker,
                  ops::FusedFeedForwardOpGradMaker<paddle::framework::OpDesc>,
                  ops::FusedFeedForwardOpGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fused_feedforward_grad, ops::FusedFeedForwardOpGrad);
379 380 381 382 383 384 385 386

REGISTER_OP_VERSION(fused_feedforward)
    .AddCheckpoint(
        R"ROC(
              Add a new attribute [add_residual] )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "add_residual", "A flag to indicate whether to add residual.",
            true));