Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
223fb7b3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
223fb7b3
编写于
6月 21, 2022
作者:
Y
Yiqun Liu
提交者:
GitHub
6月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix code example of fused_attention and fused_feedforward. (#43635)
上级
4aac90ef
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
81 addition
and
56 deletion
+81
-56
paddle/fluid/operators/fused/fused_attention_op.cc
paddle/fluid/operators/fused/fused_attention_op.cc
+15
-10
paddle/fluid/operators/fused/fused_feedforward_op.cc
paddle/fluid/operators/fused/fused_feedforward_op.cc
+19
-11
python/paddle/incubate/nn/functional/fused_transformer.py
python/paddle/incubate/nn/functional/fused_transformer.py
+47
-35
未找到文件。
paddle/fluid/operators/fused/fused_attention_op.cc
浏览文件 @
223fb7b3
...
...
@@ -386,13 +386,15 @@ class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
-
1
);
AddComment
(
R"DOC(
Add fused attention op whose logic is as follows:
// @input: [batch_size, seq_len, 3, num_head, head_dim]
The fused_attention operator is the same as following pseudo codes:
// @input: [batch_size, seq_len, embed_dim]
// @final_out: [batch_size, seq_len, num_heads, head_dim]
residual = input
if (pre_layernorm)
out
= layer_norm(input);
out = compute_qkv(out) +
bias;
// fmha module
query
= layer_norm(input);
out = compute_qkv(query) + qkv_
bias;
// fmha module
{
out = transpose(out, perm=[2, 0, 3, 1, 4]);
out = q * k^t;
...
...
@@ -403,11 +405,14 @@ class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
out = transpose(out, perm=[0, 2, 1, 3]);
}
out = out_linear(out);
if (pre_layernorm)
final_out = residual + dropout(bias + out);
else
final_out = layer_norm(residual + dropout(bias + out));
// out linear
out = linear(out);
if add_residual:
out = residual + dropout(out);
else:
out = dropout(out);
if (!pre_layernorm)
out = layer_norm(out);
)DOC"
);
}
};
...
...
paddle/fluid/operators/fused/fused_feedforward_op.cc
浏览文件 @
223fb7b3
...
...
@@ -198,17 +198,25 @@ class FusedFeedForwardOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int
>
(
"ring_id"
,
"ring id for tensor model parallel."
)
.
SetDefault
(
-
1
);
AddComment
(
R"DOC(
the function of fused_feedforward operator is the same as the following pseudo code:
residual = src;
ln1_out = src;
if(pre_layer_norm){
ln1_out = layer_norm(src);
}
out = linear(dropout(activation(dropout(linear(ln1_out)))));
if(!pre_layer_norm) {
out = layer_norm(out);
}
)DOC"
);
The fused_feedforward operator is the same as the following pseudo codes:
residual = src;
if (pre_layer_norm)
ln1_out = layer_norm(src);
else
ln1_out = src;
// linear 1
out = linear(ln1_out);
out = dropout(activation(out));
// linear 2
out = linear(out);
if (add_residual)
out = residual + dropout(out);
else
out = dropout(out);
if (!pre_layer_norm)
out = layer_norm(out);
)DOC"
);
}
};
...
...
python/paddle/incubate/nn/functional/fused_transformer.py
浏览文件 @
223fb7b3
...
...
@@ -55,12 +55,19 @@ def fused_feedforward(x,
.. code-block:: python
residual =
src;
residual =
x
if pre_layer_norm:
src = layer_norm(src)
src = linear(dropout(activation(dropout(linear(src)))))
out = layer_norm1(x)
else:
out = x
out = linear2(dropout1(activation(linear1(src))))
if add_residual:
out = residual + dropout2(out)
else:
out = dropout2(out)
if not pre_layer_norm:
src = layer_norm(out)
out = layer_norm2(out)
Args:
x (Tensor): the input tensor could be 3-D tensor, the input data type could be float16, float32 or float64, the shape is`[batch\_size, sequence\_length, d_model]`.
...
...
@@ -102,15 +109,13 @@ def fused_feedforward(x,
# required: gpu
import paddle
import numpy as np
x_data = np.random.random((1, 8, 8)).astype("float32")
linear1_weight_data = np.random.random((8, 8)).astype("float32")
linear2_weight_data = np.random.random((8, 8)).astype("float32")
x = paddle.to_tensor(x_data)
linear1_weight = paddle.to_tensor(linear1_weight_data)
linear2_weight = paddle.to_tensor(linear2_weight_data)
out = paddle.incubate.nn.functional.fused_feedforward(x, linear1_weight, linear2_weight)
print(out.numpy().shape)
import paddle.incubate.nn.functional as F
x = paddle.randn(shape=(1, 8, 8), dtype="float32")
linear1_weight = paddle.randn(shape=(8, 8), dtype="float32")
linear2_weight = paddle.randn(shape=(8, 8), dtype="float32")
out = F.fused_feedforward(x, linear1_weight, linear2_weight)
print(out.shape)
# (1, 8, 8)
"""
_verify_dropout_rate
(
dropout1_rate
)
...
...
@@ -392,27 +397,34 @@ def fused_multi_head_attention(x,
.. code-block:: python
if pre_layer_norm:
out = layer_norm(x)
out = linear(out) + qkv) + bias
else:
out = linear(x) + bias
out = transpose(out, perm=[2, 0, 3, 1, 4])
# extract q, k and v from out.
q = out[0:1,::]
k = out[1:2,::]
v = out[2:3,::]
out = q * k^t
out = attn_mask + out
out = softmax(out)
out = dropout(out)
out = out * v
out = transpose(out, perm=[0, 2, 1, 3])
out = out_linear(out)
if pre_layer_norm:
out = x + dropout(linear_bias + out)
residual = x
if pre_layer_norm:
out = layer_norm(x)
else:
out = layer_norm(x + dropout(linear_bias + out))
out = x
# compute q, k, v
out = matmul(out, qkv_weight) + qkv_bias
out = transpose(out, perm=[2, 0, 3, 1, 4])
# extract q, k and v from out
q = out[0:1,::] * (head_dim ** -0.5)
k = out[1:2,::]
v = out[2:3,::]
out = matmul(q, k, transpose_y=True)
out = out + attn_mask
out = softmax(out)
out = dropout(out)
out = matmul(out, v)
# combine heads
out = transpose(out, perm=[0, 2, 1, 3])
# project to output
out = linear(out)
if add_residual:
out = residual + dropout(out)
else:
out = dropout(out)
if not pre_layer_norm:
out = layer_norm(out)
Parameters:
x (Tensor): The input tensor of fused_multi_head_attention. The shape is
...
...
@@ -420,7 +432,7 @@ def fused_multi_head_attention(x,
qkv_weight (Tensor): The qkv weight tensor. The shape is `[3, num_head, dim_head, dim_embed]`.
linear_weight (Tensor): The linear weight tensor. The shape is `[embed_dim, embed_dim]`.
pre_layer_norm (bool, optional): whether it is pre_layer_norm (True) or post_layer_norm architecture
(False). Default False.
(False). Default False.
pre_ln_scale (Tensor, optional): The weight tensor of pre layernorm. Default None.
pre_ln_bias (Tensor, optional): The bias tensor of pre layernorm. Default None.
ln_scale (Tensor, optional): The weight tensor of layernorm. Default None.
...
...
@@ -432,7 +444,7 @@ def fused_multi_head_attention(x,
linear_bias (Tensor, optional): The bias of linear. The shape is `[embed_dim]`. Default None.
cache_kv (Tensor, optional): For generation model, cache structure. The shape is `[2, bsz, num_head, seq_len, head_dim]`. Default None.
attn_mask (Tensor, optional): A tensor used in multi-head attention to prevents attention to
some unwanted positions, usually the paddings or the subsequent positions. It is a tensor
some unwanted positions, usually the paddings or the subsequent positions. It is a tensor
with shape broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`. When the
data type is bool, the unwanted positions have `False` values and the others have `True` values.
When the data type is int, the unwanted positions have 0 values and the others have 1 values.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录