fused_attention_op.cu 25.6 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda_fp16.h>
16

L
Li Min 已提交
17
#include <cub/cub.cuh>
18

L
Li Min 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21 22 23 24
#include "paddle/fluid/operators/fused/attention_layer_norm.h"
#include "paddle/fluid/operators/fused/attn_gemm.h"
#include "paddle/fluid/operators/fused/fmha_ref.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
25 26
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
27 28
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
29
#include "paddle/phi/kernels/funcs/math_function.h"
L
Li Min 已提交
30

31 32 33 34 35
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif

L
Li Min 已提交
36 37 38 39 40
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
template <typename T>
static void AllReduce(framework::Tensor &tensor,  // NOLINT
                      const int ring_id,
                      const platform::CUDADeviceContext &ctx) {
  if (ring_id == -1) return;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  auto dtype =
      platform::ToNCCLDataType(framework::TransToProtoVarType(tensor.dtype()));
  int64_t numel = tensor.numel();
  const void *sendbuff = tensor.data<T>();
  auto place = ctx.GetPlace();
  void *recvbuff = tensor.mutable_data<T>(place);
  auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
  auto stream = ctx.stream();
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
      sendbuff, recvbuff, numel, dtype, ncclSum, comm->comm(), stream));
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "PaddlePaddle should compile with NCCL or RCCL when used tensor model "
      "parallel op."));
#endif
}

L
Li Min 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
template <typename T>
class FusedAttentionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    auto *input_x = ctx.Input<Tensor>("X");

    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_bias = ctx.Input<Tensor>("LnBias");
    auto *ln_mean = ctx.Output<Tensor>("LnMean");
    auto *ln_var = ctx.Output<Tensor>("LnVariance");
    auto *ln_out = ctx.Output<Tensor>("LnOut");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *qkv_out = ctx.Output<Tensor>("QKVOut");
    auto *qkv_bias_out = ctx.Output<Tensor>("QKVBiasOut");

    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *transpose_out_2 = ctx.Output<Tensor>("TransposeOut2");
88 89
    auto *cache_kv = ctx.Input<Tensor>("CacheKV");
    auto *cache_kv_out = ctx.Output<Tensor>("CacheKVOut");
L
Li Min 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    auto *qk_out = ctx.Output<Tensor>("QKOut");
    auto *qktv_out = ctx.Output<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Output<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Output<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Output<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Output<Tensor>("SrcMaskOut");
    auto *fmha_out = ctx.Output<Tensor>("FMHAOut");

    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *out_linear_out = ctx.Output<Tensor>("OutLinearOut");

    auto *ln_scale_2 = ctx.Input<Tensor>("Ln2Scale");
    auto *ln_bias_2 = ctx.Input<Tensor>("Ln2Bias");
    auto *dropout_mask_out = ctx.Output<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Output<Tensor>("BiasDropoutResidualOut");
    auto *ln_mean_2 = ctx.Output<Tensor>("Ln2Mean");
    auto *ln_var_2 = ctx.Output<Tensor>("Ln2Variance");
    const float ln_epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_rate = ctx.Attr<float>("attn_dropout_rate");
L
Li Min 已提交
112
    bool is_test_1 = ctx.Attr<bool>("is_test");
L
Li Min 已提交
113 114 115 116 117 118 119
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");
120
    int ring_id = ctx.Attr<int>("ring_id");
L
Li Min 已提交
121 122 123 124 125 126 127 128 129 130

    // final output.
    auto *out = ctx.Output<Tensor>("Y");

    // get data ptr for qkv part.
    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    auto *x_data = input_x->data<T>();
    auto *qkv_weight_data = qkv_weight->data<T>();
131
    auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
L
Li Min 已提交
132
    auto *qkv_out_data = qkv_out->mutable_data<T>(ctx.GetPlace());
133 134 135
    auto *qkv_bias_out_data =
        (qkv_bias == nullptr) ? nullptr
                              : qkv_bias_out->mutable_data<T>(ctx.GetPlace());
L
Li Min 已提交
136 137 138 139

    // get data ptr for FMHA.
    auto *transpose_out_2_data =
        transpose_out_2->mutable_data<T>(ctx.GetPlace());
140 141 142 143
    auto *cache_kv_out_data =
        (cache_kv_out == nullptr)
            ? nullptr
            : cache_kv_out->mutable_data<T>(ctx.GetPlace());
L
Li Min 已提交
144 145
    auto *qk_out_data = qk_out->mutable_data<T>(ctx.GetPlace());
    auto *qktv_out_data = qktv_out->mutable_data<T>(ctx.GetPlace());
146 147 148
    auto *src_mask_out_data =
        (src_mask == nullptr) ? nullptr
                              : src_mask_out->mutable_data<T>(ctx.GetPlace());
L
Li Min 已提交
149 150 151 152 153 154 155 156 157
    auto *softmax_out_data = softmax_out->mutable_data<T>(ctx.GetPlace());
    auto *attn_dropout_mask_out_data =
        attn_dropout_mask_out->mutable_data<uint8_t>(ctx.GetPlace());
    auto *attn_dropout_out_data =
        attn_dropout_out->mutable_data<T>(ctx.GetPlace());
    auto *fmha_out_data = fmha_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for out_linear.
    auto *out_linear_weight_data = out_linear_weight->data<T>();
158 159
    auto *out_linear_bias_data =
        (out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
L
Li Min 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    auto *out_linear_out_data = out_linear_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for bias+dropout+residual+layernorm
    auto *dropout_mask_out_data =
        dropout_mask_out->mutable_data<uint8_t>(ctx.GetPlace());
    auto *final_out_data = out->mutable_data<T>(ctx.GetPlace());

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];

    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

    auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
                                               epsilon, bsz_seq, dim_embed);
181 182 183 184 185

    bool compute_bias = true;
    if (qkv_bias == nullptr) {
      compute_bias = false;
    }
L
Li Min 已提交
186
    // (transA, transB, compute_bias) = (false, true, true)
187 188 189
    auto qkv_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), false, true, bsz_seq,
                      output_size, input_size, compute_bias);
L
Li Min 已提交
190 191 192 193 194 195 196 197 198 199

    AttnDropoutParam attn_dropout_param(
        is_test_1, dropout_implementation_1, attn_dropout_rate,
        is_upscale_in_train_1, is_fix_seed_1, seed_val_1, seed_1);
    auto fmha_ref_compute =
        FMHARef<T>(ctx.cuda_device_context(), batch_size, max_seq_len, num_head,
                   dim_head, attn_dropout_param);

    output_size = hidden_size;
    // (transA, transB, compute_bias) = (false, false, false)
200 201 202 203 204
    // NOTE(Yuang Liu): For general input size == output size, change the
    // position won't have effects. For mp, the output size is mp_head * dkey
    // which is actually the input size. While the input size is hidden size,
    // which is actually the output size. So for out linear, switch the
    // input size and output size.
L
Li Min 已提交
205 206
    auto out_linear_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), false, false, bsz_seq,
207
                      input_size, output_size, false);
L
Li Min 已提交
208 209 210 211 212 213
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx.cuda_device_context(), bsz_seq, dim_embed, dropout_param2,
        ln_epsilon);

    if (pre_layer_norm) {
L
Li Min 已提交
214 215 216 217 218 219 220
      auto *ln_scale_data =
          (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
      auto *ln_bias_data = (ln_bias == nullptr ? nullptr : ln_bias->data<U>());
      auto *ln_mean_data = ln_mean->mutable_data<U>(ctx.GetPlace());
      auto *ln_var_data = ln_var->mutable_data<U>(ctx.GetPlace());
      auto *ln_out_data = ln_out->mutable_data<T>(ctx.GetPlace());

L
Li Min 已提交
221 222
      layer_norm_compute.ComputeForward(x_data, ln_scale_data, ln_bias_data,
                                        ln_out_data, ln_mean_data, ln_var_data);
L
Li Min 已提交
223 224
      qkv_compute.ComputeForward(qkv_weight, ln_out, qkv_bias, qkv_out,
                                 qkv_bias_out);
L
Li Min 已提交
225
    } else {
L
Li Min 已提交
226 227
      qkv_compute.ComputeForward(qkv_weight, input_x, qkv_bias, qkv_out,
                                 qkv_bias_out);
L
Li Min 已提交
228
    }
229
    if (qkv_bias == nullptr) {
230 231 232 233
      fmha_ref_compute.ComputeForward(
          *qkv_out, cache_kv, src_mask, transpose_out_2, cache_kv_out, qk_out,
          src_mask_out, softmax_out, attn_dropout_mask_out, attn_dropout_out,
          qktv_out, fmha_out);
234
    } else {
235 236 237 238
      fmha_ref_compute.ComputeForward(
          *qkv_bias_out, cache_kv, src_mask, transpose_out_2, cache_kv_out,
          qk_out, src_mask_out, softmax_out, attn_dropout_mask_out,
          attn_dropout_out, qktv_out, fmha_out);
239
    }
240

L
Li Min 已提交
241 242 243
    // fmha_out: [batch_size, seq_len, num_head, head_dim]
    // weight:   [embed_dim, embed_dim]
    // out_linear_out: [batch_size, seq_len, embed_dim]
L
Li Min 已提交
244 245
    out_linear_compute.ComputeForward(out_linear_weight, fmha_out, nullptr,
                                      out_linear_out, nullptr);
246 247 248
    // tensor model parallel
    AllReduce<T>(*out_linear_out, ring_id, ctx.cuda_device_context());

249 250
    bool add_residual = ctx.Attr<bool>("add_residual");
    const T *residual_ptr = add_residual ? x_data : nullptr;
L
Li Min 已提交
251 252 253
    if (pre_layer_norm) {
      // output = (residual + dropout(input + bias))
      fused_dropout_layernorm_helper.ResidualDropoutBias(
254
          ctx.cuda_device_context(), out_linear_out_data, residual_ptr,
L
Li Min 已提交
255 256
          out_linear_bias_data, final_out_data, dropout_mask_out_data);
    } else {
257 258 259 260 261 262 263 264 265
      // TODO(Xreki): support post layer_norm case when add_residual is false.
      PADDLE_ENFORCE_EQ(add_residual, true,
                        platform::errors::InvalidArgument(
                            "Attribute add_residual is expected to be true "
                            "when pre_layer_norm is false."));

      const U *ln_scale_2_ptr = ln_scale_2 ? ln_scale_2->data<U>() : nullptr;
      const U *ln_bias_2_ptr = ln_bias_2 ? ln_bias_2->data<U>() : nullptr;
      T *bias_dropout_residual_out_ptr =
L
Li Min 已提交
266
          bias_dropout_residual_out->mutable_data<T>(ctx.GetPlace());
267 268
      U *ln_mean_2_ptr = ln_mean_2->mutable_data<U>(ctx.GetPlace());
      U *ln_var_2_ptr = ln_var_2->mutable_data<U>(ctx.GetPlace());
L
Li Min 已提交
269 270
      // output = layernorm(residual + dropout(input + bias))
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
271 272 273 274
          ctx.cuda_device_context(), out_linear_out_data, residual_ptr,
          out_linear_bias_data, ln_scale_2_ptr, ln_bias_2_ptr,
          bias_dropout_residual_out_ptr, dropout_mask_out_data, final_out_data,
          ln_mean_2_ptr, ln_var_2_ptr);
L
Li Min 已提交
275
    }
L
Li Min 已提交
276 277 278
  }
};

279 280 281 282 283 284 285 286 287 288
template <typename T>
class FusedAttentionGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    const float ln2epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_prob = ctx.Attr<float>("attn_dropout_rate");
L
Li Min 已提交
289
    bool is_test_1 = ctx.Attr<bool>("is_test");
290 291 292 293 294 295 296
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");
297
    int ring_id = ctx.Attr<int>("ring_id");
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

    // get inputs.
    auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *d_y_data = d_y->data<T>();

    // fw input
    auto *input_x = ctx.Input<Tensor>("X");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_2_scale = ctx.Input<Tensor>("Ln2Scale");
    auto *x_data = input_x->data<T>();
    auto *ln_scale_data = (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
    auto *ln_2_scale_data =
        (ln_2_scale == nullptr ? nullptr : ln_2_scale->data<U>());
    // fw parameters.
    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *src_mask_data = (src_mask == nullptr ? nullptr : src_mask->data<T>());
    auto *qkv_weight_data = qkv_weight->data<T>();
319
    auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
320
    auto *out_linear_weight_data = out_linear_weight->data<T>();
321 322
    auto *out_linear_bias_data =
        (out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

    // fw output
    auto *fmha_out = ctx.Input<Tensor>("FMHAOut");
    auto *transpose_out_2 = ctx.Input<Tensor>("TransposeOut2");
    auto *qk_out = ctx.Input<Tensor>("QKOut");
    auto *qktv_out = ctx.Input<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Input<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Input<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Input<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Input<Tensor>("SrcMaskOut");
    auto *out_linear_out = ctx.Input<Tensor>("OutLinearOut");
    auto *ln_2_mean = ctx.Input<Tensor>("Ln2Mean");
    auto *ln_2_var = ctx.Input<Tensor>("Ln2Variance");
    auto *dropout_mask_out = ctx.Input<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Input<Tensor>("BiasDropoutResidualOut");
    auto *fmha_out_data = fmha_out->data<T>();
    auto *transpose_out_2_data = transpose_out_2->data<T>();
    auto *qk_out_data = qk_out->data<T>();
    auto *qktv_out_data = qktv_out->data<T>();
    auto *softmax_out_data = softmax_out->data<T>();
344 345
    auto *src_mask_out_data =
        (src_mask == nullptr) ? nullptr : src_mask_out->data<T>();
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    auto *out_linear_out_data = out_linear_out->data<T>();
    auto *dropout_mask_out_data = dropout_mask_out->data<uint8_t>();

    // output's grad
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_qkv_out = ctx.Output<Tensor>(framework::GradVarName("QKVOut"));
    auto *d_qkv_bias_out =
        ctx.Output<Tensor>(framework::GradVarName("QKVBiasOut"));
    auto *d_qktv_out = ctx.Output<Tensor>(framework::GradVarName("QKTVOut"));
    auto *d_transpose_out_2 =
        ctx.Output<Tensor>(framework::GradVarName("TransposeOut2"));
    auto *d_qk_out = ctx.Output<Tensor>(framework::GradVarName("QKOut"));
    auto *d_softmax_out =
        ctx.Output<Tensor>(framework::GradVarName("SoftmaxOut"));
    auto *d_attn_dropout_out =
        ctx.Output<Tensor>(framework::GradVarName("AttnDropoutOut"));
    auto *d_src_mask_out =
        ctx.Output<Tensor>(framework::GradVarName("SrcMaskOut"));
    auto *d_fmha_out = ctx.Output<Tensor>(framework::GradVarName("FMHAOut"));
    auto *d_out_linear_out =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearOut"));
    auto *d_bias_dropout_residual_out =
        ctx.Output<Tensor>(framework::GradVarName("BiasDropoutResidualOut"));
    auto *d_x_data = d_x->mutable_data<T>(ctx.GetPlace());
370 371 372 373 374 375 376 377 378
    // when qkv_bias is not nullptr, d_qkv_out is equals to d_qkv_bias_out, the
    // space can be reused.
    auto *d_qkv_out_data = (d_qkv_bias_out != nullptr)
                               ? nullptr
                               : d_qkv_out->mutable_data<T>(ctx.GetPlace());
    auto *d_qkv_bias_out_data =
        (d_qkv_bias_out == nullptr)
            ? nullptr
            : d_qkv_bias_out->mutable_data<T>(ctx.GetPlace());
379 380 381 382 383 384 385
    auto *d_qktv_out_data = d_qktv_out->mutable_data<T>(ctx.GetPlace());
    auto *d_transpose_out_2_data =
        d_transpose_out_2->mutable_data<T>(ctx.GetPlace());
    auto *d_qk_out_data = d_qk_out->mutable_data<T>(ctx.GetPlace());
    auto *d_softmax_out_data = d_softmax_out->mutable_data<T>(ctx.GetPlace());
    auto *d_attn_dropout_out_data =
        d_attn_dropout_out->mutable_data<T>(ctx.GetPlace());
386 387 388
    auto *d_src_mask_out_data =
        (src_mask == nullptr) ? nullptr
                              : d_src_mask_out->mutable_data<T>(ctx.GetPlace());
389 390 391 392 393 394 395 396 397 398 399 400 401
    auto *d_fmha_out_data = d_fmha_out->mutable_data<T>(ctx.GetPlace());
    auto *d_out_linear_out_data =
        d_out_linear_out->mutable_data<T>(ctx.GetPlace());

    // parameter grad
    auto *d_qkv_weight = ctx.Output<Tensor>(framework::GradVarName("QKVW"));
    auto *d_qkv_bias = ctx.Output<Tensor>(framework::GradVarName("QKVBias"));
    auto *d_out_linear_weight =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearW"));
    auto *d_out_linear_bias =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearBias"));
    auto *d_ln_2_scale = ctx.Output<Tensor>(framework::GradVarName("Ln2Scale"));
    auto *d_ln_2_bias = ctx.Output<Tensor>(framework::GradVarName("Ln2Bias"));
402

403
    auto *d_qkv_weight_data = d_qkv_weight->mutable_data<T>(ctx.GetPlace());
404 405 406
    auto *d_qkv_bias_data = (d_qkv_bias == nullptr)
                                ? nullptr
                                : d_qkv_bias->mutable_data<T>(ctx.GetPlace());
407 408 409
    auto *d_out_linear_weight_data =
        d_out_linear_weight->mutable_data<T>(ctx.GetPlace());
    auto *d_out_linear_bias_data =
410 411 412
        (d_out_linear_bias == nullptr)
            ? nullptr
            : d_out_linear_bias->mutable_data<T>(ctx.GetPlace());
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];
    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

428
    bool add_residual = ctx.Attr<bool>("add_residual");
429
    Tensor d_residual;
430 431 432 433 434
    T *d_residual_data = nullptr;
    if (add_residual) {
      d_residual.Resize(input_x_dims);
      d_residual_data = d_residual.mutable_data<T>(ctx.GetPlace());
    }
435 436 437

    bool transA = false;
    bool transB = true;
438
    bool compute_qkv_bias = qkv_bias ? true : false;
439 440 441 442
    auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
                                               epsilon, bsz_seq, dim_embed);
    auto qkv_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), transA, transB, bsz_seq,
443
                      output_size, input_size, compute_qkv_bias);
444 445 446 447 448 449 450 451 452
    AttnDropoutParam attn_dropout_param(
        is_test_1, dropout_implementation_1, attn_dropout_prob,
        is_upscale_in_train_1, is_fix_seed_1, seed_val_1, seed_1);
    auto fmha_ref_compute =
        FMHARef<T>(ctx.cuda_device_context(), batch_size, max_seq_len, num_head,
                   dim_head, attn_dropout_param);
    output_size = hidden_size;
    transA = false;
    transB = false;
453
    bool compute_bias = false;
454
    // (b*s, num_head * dim_head) * (num_head * dim_head, dim_embed)
455 456
    auto out_linear_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), transA, transB, bsz_seq,
457
                      input_size, output_size, compute_bias);
458 459 460 461 462
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx.cuda_device_context(), bsz_seq, dim_embed, dropout_param2,
        ln2epsilon);

L
Li Min 已提交
463 464 465 466 467 468 469 470 471 472
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
          ctx.cuda_device_context(), d_y_data, dropout_mask_out_data,
          d_out_linear_out_data, d_residual_data, d_out_linear_bias_data);
    } else {
      auto *ln_2_mean_data = ln_2_mean->data<U>();
      auto *ln_2_var_data = ln_2_var->data<U>();
      auto *bias_dropout_residual_out_data =
          bias_dropout_residual_out->data<T>();
      auto *d_ln_2_scale_data =
473 474 475
          (d_ln_2_scale == nullptr
               ? nullptr
               : d_ln_2_scale->mutable_data<U>(ctx.GetPlace()));
L
Li Min 已提交
476
      auto *d_ln_2_bias_data =
477 478 479
          (d_ln_2_bias == nullptr
               ? nullptr
               : d_ln_2_bias->mutable_data<U>(ctx.GetPlace()));
L
Li Min 已提交
480 481 482 483 484 485 486 487 488
      auto *d_bias_dropout_residual_out_data =
          d_bias_dropout_residual_out->mutable_data<T>(ctx.GetPlace());

      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
          ctx.cuda_device_context(), d_y_data, bias_dropout_residual_out_data,
          dropout_mask_out_data, ln_2_scale_data, ln_2_mean_data, ln_2_var_data,
          d_bias_dropout_residual_out_data, d_ln_2_scale_data, d_ln_2_bias_data,
          d_out_linear_out_data, d_out_linear_bias_data, d_residual_data);
    }
489

L
Li Min 已提交
490 491 492 493
    out_linear_compute.ComputeBackward(fmha_out, out_linear_weight,
                                       d_out_linear_out, d_fmha_out,
                                       d_out_linear_weight, nullptr);

494 495 496 497 498 499 500 501 502 503 504 505 506
    if (qkv_bias != nullptr) {
      fmha_ref_compute.ComputeBackward(
          *transpose_out_2, src_mask, *softmax_out, *attn_dropout_mask_out,
          *attn_dropout_out, *qk_out, *src_mask_out, *d_fmha_out, d_qktv_out,
          d_attn_dropout_out, d_softmax_out, d_src_mask_out, d_qk_out,
          d_transpose_out_2, nullptr, d_qkv_bias_out);
    } else {
      fmha_ref_compute.ComputeBackward(
          *transpose_out_2, src_mask, *softmax_out, *attn_dropout_mask_out,
          *attn_dropout_out, *qk_out, *src_mask_out, *d_fmha_out, d_qktv_out,
          d_attn_dropout_out, d_softmax_out, d_src_mask_out, d_qk_out,
          d_transpose_out_2, nullptr, d_qkv_out);
    }
507 508

    if (pre_layer_norm) {
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
      auto *ln_mean = ctx.Input<Tensor>("LnMean");
      auto *ln_var = ctx.Input<Tensor>("LnVariance");
      auto *ln_out = ctx.Input<Tensor>("LnOut");
      auto *ln_mean_data = ln_mean->data<U>();
      auto *ln_var_data = ln_var->data<U>();
      auto *ln_out_data = ln_out->data<T>();

      auto *d_ln_out = ctx.Output<Tensor>(framework::GradVarName("LnOut"));
      auto *d_ln_scale = ctx.Output<Tensor>(framework::GradVarName("LnScale"));
      auto *d_ln_bias = ctx.Output<Tensor>(framework::GradVarName("LnBias"));
      auto *d_ln_out_data = d_ln_out->mutable_data<T>(ctx.GetPlace());
      auto *d_ln_scale_data =
          (d_ln_scale == nullptr ? nullptr
                                 : d_ln_scale->mutable_data<U>(ctx.GetPlace()));
      auto *d_ln_bias_data =
          (d_ln_bias == nullptr ? nullptr
                                : d_ln_bias->mutable_data<U>(ctx.GetPlace()));
526 527 528 529 530 531 532
      if (qkv_bias != nullptr) {
        qkv_compute.ComputeBackward(ln_out, qkv_weight, d_qkv_bias_out,
                                    d_ln_out, d_qkv_weight, d_qkv_bias);
      } else {
        qkv_compute.ComputeBackward(ln_out, qkv_weight, d_qkv_out, d_ln_out,
                                    d_qkv_weight, d_qkv_bias);
      }
533 534
      // tensor model parallel
      AllReduce<T>(*d_ln_out, ring_id, ctx.cuda_device_context());
535 536 537 538
      layer_norm_compute.ComputeBackward(x_data, d_ln_out_data, ln_scale_data,
                                         ln_mean_data, ln_var_data, d_x_data,
                                         d_ln_scale_data, d_ln_bias_data);
    } else {
539 540 541 542 543 544 545
      if (qkv_bias != nullptr) {
        qkv_compute.ComputeBackward(input_x, qkv_weight, d_qkv_bias_out, d_x,
                                    d_qkv_weight, d_qkv_bias);
      } else {
        qkv_compute.ComputeBackward(input_x, qkv_weight, d_qkv_out, d_x,
                                    d_qkv_weight, d_qkv_bias);
      }
546 547
      // tensor model parallel
      AllReduce<T>(*d_x, ring_id, ctx.cuda_device_context());
548
    }
549 550 551 552 553 554 555 556

    if (add_residual) {
      // gradient accumulation
      std::vector<const Tensor *> ins = {&d_residual, d_x};
      std::vector<Tensor *> outs = {d_x};
      phi::funcs::ElementwiseKernel<T>(ctx.cuda_device_context(), ins, &outs,
                                       phi::funcs::AddFunctor<T>());
    }
557 558 559
  }
};

L
Li Min 已提交
560 561 562 563 564 565 566 567
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(fused_attention, ops::FusedAttentionOpKernel<float>,
                        ops::FusedAttentionOpKernel<double>,
                        ops::FusedAttentionOpKernel<plat::float16>);
568 569 570 571
REGISTER_OP_CUDA_KERNEL(fused_attention_grad,
                        ops::FusedAttentionGradKernel<float>,
                        ops::FusedAttentionGradKernel<double>,
                        ops::FusedAttentionGradKernel<plat::float16>);