Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ad44a40c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ad44a40c
编写于
11月 10, 2021
作者:
L
Li Min
提交者:
GitHub
11月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix fused_attention_op scope. (#37065)
att, bug fix
上级
48d53cfc
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
135 addition
and
108 deletion
+135
-108
paddle/fluid/operators/fused/fused_attention_op.cc
paddle/fluid/operators/fused/fused_attention_op.cc
+70
-58
paddle/fluid/operators/fused/fused_attention_op.cu
paddle/fluid/operators/fused/fused_attention_op.cu
+52
-39
python/paddle/fluid/tests/unittests/test_fused_attention_op.py
...n/paddle/fluid/tests/unittests/test_fused_attention_op.py
+8
-8
python/paddle/fluid/tests/unittests/test_fused_attention_op_api.py
...ddle/fluid/tests/unittests/test_fused_attention_op_api.py
+5
-3
未找到文件。
paddle/fluid/operators/fused/fused_attention_op.cc
浏览文件 @
ad44a40c
...
...
@@ -42,6 +42,13 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"LnOut"
),
"Output"
,
"LnOut"
,
"FusedAttentionOp"
);
}
else
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Ln2Mean"
),
"Output"
,
"Ln2Mean"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Ln2Variance"
),
"Output"
,
"Ln2Variance"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"BiasDropoutResidualOut"
),
"Output"
,
"BiasDropoutResidualOut"
,
"FusedAttentionOp"
);
}
// qkv_out: [batch_size, seq_len, 3, num_head, dim_head]
...
...
@@ -70,12 +77,7 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"OutLinearOut"
),
"Output"
,
"OutLinearOut"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Ln2Mean"
),
"Output"
,
"Ln2Mean"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Ln2Variance"
),
"Output"
,
"Ln2Variance"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"BiasDropoutResidualOut"
),
"Output"
,
"BiasDropoutResidualOut"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"DropoutMaskOut"
),
"Output"
,
"DropoutMaskOut"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Y"
),
"Output"
,
"Y"
,
"FusedAttentionOp"
);
...
...
@@ -109,6 +111,10 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"LnMean"
,
{
x_dim
[
0
]
*
x_dim
[
1
]});
ctx
->
SetOutputDim
(
"LnVariance"
,
{
x_dim
[
0
]
*
x_dim
[
1
]});
ctx
->
SetOutputDim
(
"LnOut"
,
ctx
->
GetInputDim
(
"X"
));
}
else
{
ctx
->
SetOutputDim
(
"Ln2Mean"
,
{
x_dim
[
0
]
*
x_dim
[
1
]});
ctx
->
SetOutputDim
(
"Ln2Variance"
,
{
x_dim
[
0
]
*
x_dim
[
1
]});
ctx
->
SetOutputDim
(
"BiasDropoutResidualOut"
,
ctx
->
GetInputDim
(
"X"
));
}
// [batch_size, seq_len, 3, num_head, head_size]
ctx
->
SetOutputDim
(
"QKVOut"
,
...
...
@@ -138,12 +144,10 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"FMHAOut"
,
{
x_dim
[
0
],
x_dim
[
1
],
y_dim
[
1
],
y_dim
[
2
]});
ctx
->
SetOutputDim
(
"OutLinearOut"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
"Ln2Mean"
,
{
x_dim
[
0
]
*
x_dim
[
1
]});
ctx
->
SetOutputDim
(
"Ln2Variance"
,
{
x_dim
[
0
]
*
x_dim
[
1
]});
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"dropout_is_test"
)
==
false
)
{
ctx
->
SetOutputDim
(
"DropoutMaskOut"
,
ctx
->
GetInputDim
(
"X"
));
}
ctx
->
SetOutputDim
(
"BiasDropoutResidualOut"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
"Y"
,
ctx
->
GetInputDim
(
"X"
));
}
...
...
@@ -314,25 +318,28 @@ class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
});
AddComment
(
R"DOC(
Add fused attention op whose logic is as follows:
// @input: [batch_size, seq_len, 3, num_head, head_dim]
// @final_out: [batch_size, seq_len, num_heads, head_dim]
if (pre_layernorm)
out = layer_norm(input);
Add fused attention op whose logic is as follows:
// @input: [batch_size, seq_len, 3, num_head, head_dim]
// @final_out: [batch_size, seq_len, num_heads, head_dim]
if (pre_layernorm)
out = layer_norm(input);
out = compute_qkv(out) + bias;
// fmha module
{
out = transpose(out, perm=[2, 0, 3, 1, 4]);
out = q * k^t;
out = attn_mask + out;
out = softmax(out);
out = dropout(out);
out = out * v;
out = transpose(out, perm=[0, 2, 1, 3]);
{
out = transpose(out, perm=[2, 0, 3, 1, 4]);
out = q * k^t;
out = attn_mask + out;
out = softmax(out);
out = dropout(out);
out = out * v;
out = transpose(out, perm=[0, 2, 1, 3]);
}
}
out = out_linear(out);
final_out = layer_norm(residual + dropout(bias + out));
if (pre_layernorm)
final_out = residual + dropout(bias + out);
else
final_out = layer_norm(residual + dropout(bias + out));
)DOC"
);
}
};
...
...
@@ -347,20 +354,20 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
platform
::
errors
::
InvalidArgument
(
"GradOp is only callable when attn_dropout_is_test is false"
));
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Ln2Mean"
),
"Input"
,
"Ln2Mean"
,
"FusedAttentionGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Ln2Variance"
),
"Input"
,
"Ln2Variance"
,
"FusedAttentionGrad"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Ln2Scale"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Ln2Scale"
),
ctx
->
GetInputDim
(
"Ln2Scale"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Ln2Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Ln2Bias"
),
ctx
->
GetInputDim
(
"Ln2Bias"
));
}
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"FusedAttentionGrad"
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
false
)
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Ln2Mean"
),
"Input"
,
"Ln2Mean"
,
"FusedAttentionGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Ln2Variance"
),
"Input"
,
"Ln2Variance"
,
"FusedAttentionGrad"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Ln2Scale"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Ln2Scale"
),
ctx
->
GetInputDim
(
"Ln2Scale"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Ln2Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Ln2Bias"
),
ctx
->
GetInputDim
(
"Ln2Bias"
));
}
}
else
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"LnMean"
),
"Input"
,
"LnMean"
,
"FusedAttentionGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"LnVariance"
),
"Input"
,
"LnVariance"
,
...
...
@@ -368,6 +375,8 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"LnOut"
),
"Input"
,
"LnOut"
,
"FusedAttentionGrad"
);
}
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"FusedAttentionGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"QKVW"
),
"Input"
,
"QKVW"
,
"FusedAttentionGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"QKVBias"
),
"Input"
,
"QKVBias"
,
...
...
@@ -402,6 +411,9 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"LnOut"
),
ctx
->
GetInputDim
(
"LnOut"
));
}
else
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BiasDropoutResidualOut"
),
ctx
->
GetInputDim
(
"BiasDropoutResidualOut"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"FMHAOut"
),
ctx
->
GetInputDim
(
"FMHAOut"
));
...
...
@@ -426,8 +438,6 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
ctx
->
GetInputDim
(
"QKVBiasOut"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearOut"
),
ctx
->
GetInputDim
(
"OutLinearOut"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BiasDropoutResidualOut"
),
ctx
->
GetInputDim
(
"BiasDropoutResidualOut"
));
}
protected:
...
...
@@ -478,17 +488,17 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
op
->
SetOutput
(
framework
::
GradVarName
(
"LnBias"
),
this
->
InputGrad
(
"LnBias"
));
}
}
if
(
this
->
HasInput
(
"Ln2Scale"
))
{
op
->
SetInput
(
"Ln2Scale"
,
this
->
Input
(
"Ln2Scale"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Ln2Scale"
),
this
->
InputGrad
(
"Ln2Scale"
));
}
if
(
this
->
HasInput
(
"Ln2Bias"
))
{
op
->
SetInput
(
"Ln2Bias"
,
this
->
Input
(
"Ln2Bias"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Ln2Bias"
),
this
->
InputGrad
(
"Ln2Bias"
));
}
else
{
if
(
this
->
HasInput
(
"Ln2Scale"
))
{
op
->
SetInput
(
"Ln2Scale"
,
this
->
Input
(
"Ln2Scale"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Ln2Scale"
),
this
->
InputGrad
(
"Ln2Scale"
));
}
if
(
this
->
HasInput
(
"Ln2Bias"
))
{
op
->
SetInput
(
"Ln2Bias"
,
this
->
Input
(
"Ln2Bias"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Ln2Bias"
),
this
->
InputGrad
(
"Ln2Bias"
));
}
}
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
...
...
@@ -511,6 +521,11 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
if
(
this
->
HasOutput
(
"LnVariance"
))
{
op
->
SetInput
(
"LnVariance"
,
this
->
Output
(
"LnVariance"
));
}
}
else
{
op
->
SetInput
(
"Ln2Mean"
,
this
->
Output
(
"Ln2Mean"
));
op
->
SetInput
(
"Ln2Variance"
,
this
->
Output
(
"Ln2Variance"
));
op
->
SetInput
(
"BiasDropoutResidualOut"
,
this
->
Output
(
"BiasDropoutResidualOut"
));
}
op
->
SetInput
(
"QKVOut"
,
this
->
Output
(
"QKVOut"
));
op
->
SetInput
(
"QKVBiasOut"
,
this
->
Output
(
"QKVBiasOut"
));
...
...
@@ -523,12 +538,7 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
op
->
SetInput
(
"FMHAOut"
,
this
->
Output
(
"FMHAOut"
));
op
->
SetInput
(
"OutLinearOut"
,
this
->
Output
(
"OutLinearOut"
));
op
->
SetInput
(
"Ln2Mean"
,
this
->
Output
(
"Ln2Mean"
));
op
->
SetInput
(
"Ln2Variance"
,
this
->
Output
(
"Ln2Variance"
));
op
->
SetInput
(
"DropoutMaskOut"
,
this
->
Output
(
"DropoutMaskOut"
));
op
->
SetInput
(
"BiasDropoutResidualOut"
,
this
->
Output
(
"BiasDropoutResidualOut"
));
op
->
SetInput
(
"QKVOut"
,
this
->
Output
(
"QKVOut"
));
// backward outputs: dinput
...
...
@@ -537,7 +547,11 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
op
->
SetOutput
(
framework
::
GradVarName
(
"LnOut"
),
this
->
OutputGrad
(
"LnOut"
));
}
}
else
{
op
->
SetOutput
(
framework
::
GradVarName
(
"BiasDropoutResidualOut"
),
this
->
OutputGrad
(
"BiasDropoutResidualOut"
));
}
op
->
SetOutput
(
framework
::
GradVarName
(
"QKVOut"
),
this
->
OutputGrad
(
"QKVOut"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"QKVBiasOut"
),
this
->
OutputGrad
(
"QKVBiasOut"
));
...
...
@@ -553,8 +567,6 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
op
->
SetOutput
(
framework
::
GradVarName
(
"FMHAOut"
),
this
->
OutputGrad
(
"FMHAOut"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"BiasDropoutResidualOut"
),
this
->
OutputGrad
(
"BiasDropoutResidualOut"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"OutLinearOut"
),
this
->
OutputGrad
(
"OutLinearOut"
));
}
...
...
paddle/fluid/operators/fused/fused_attention_op.cu
浏览文件 @
ad44a40c
...
...
@@ -95,15 +95,6 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
const
auto
qkv_w_dims
=
qkv_weight
->
dims
();
auto
*
x_data
=
input_x
->
data
<
T
>
();
auto
*
ln_scale_data
=
(
ln_scale
==
nullptr
?
nullptr
:
ln_scale
->
data
<
U
>
());
auto
*
ln_bias_data
=
(
ln_bias
==
nullptr
?
nullptr
:
ln_bias
->
data
<
U
>
());
auto
*
ln_mean_data
=
pre_layer_norm
?
ln_mean
->
mutable_data
<
U
>
(
ctx
.
GetPlace
())
:
nullptr
;
auto
*
ln_var_data
=
pre_layer_norm
?
ln_var
->
mutable_data
<
U
>
(
ctx
.
GetPlace
())
:
nullptr
;
auto
*
ln_out_data
=
pre_layer_norm
?
ln_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())
:
nullptr
;
auto
*
qkv_weight_data
=
qkv_weight
->
data
<
T
>
();
auto
*
qkv_bias_data
=
qkv_bias
->
data
<
T
>
();
auto
*
qkv_out_data
=
qkv_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -130,16 +121,8 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
auto
*
out_linear_out_data
=
out_linear_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// get data ptr for bias+dropout+residual+layernorm
auto
*
ln_scale_2_data
=
(
ln_scale_2
==
nullptr
?
nullptr
:
ln_scale_2
->
data
<
U
>
());
auto
*
ln_bias_2_data
=
(
ln_bias_2
==
nullptr
?
nullptr
:
ln_bias_2
->
data
<
U
>
());
auto
*
dropout_mask_out_data
=
dropout_mask_out
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
auto
*
bias_dropout_residual_out_data
=
bias_dropout_residual_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
ln_mean_2_data
=
ln_mean_2
->
mutable_data
<
U
>
(
ctx
.
GetPlace
());
auto
*
ln_var_2_data
=
ln_var_2
->
mutable_data
<
U
>
(
ctx
.
GetPlace
());
auto
*
final_out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
batch_size
=
input_x_dims
[
0
];
...
...
@@ -178,6 +161,13 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
ln_epsilon
);
if
(
pre_layer_norm
)
{
auto
*
ln_scale_data
=
(
ln_scale
==
nullptr
?
nullptr
:
ln_scale
->
data
<
U
>
());
auto
*
ln_bias_data
=
(
ln_bias
==
nullptr
?
nullptr
:
ln_bias
->
data
<
U
>
());
auto
*
ln_mean_data
=
ln_mean
->
mutable_data
<
U
>
(
ctx
.
GetPlace
());
auto
*
ln_var_data
=
ln_var
->
mutable_data
<
U
>
(
ctx
.
GetPlace
());
auto
*
ln_out_data
=
ln_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
layer_norm_compute
.
ComputeForward
(
x_data
,
ln_scale_data
,
ln_bias_data
,
ln_out_data
,
ln_mean_data
,
ln_var_data
);
qkv_compute
.
ComputeForward
(
qkv_weight_data
,
ln_out_data
,
qkv_bias_data
,
...
...
@@ -196,12 +186,27 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
// out_linear_out: [batch_size, seq_len, embed_dim]
out_linear_compute
.
ComputeForward
(
out_linear_weight_data
,
fmha_out_data
,
nullptr
,
out_linear_out_data
,
nullptr
);
// output = layernorm(residual + dropout(input + bias))
fused_dropout_layernorm_helper
.
LayernormResidualDropoutBias
(
ctx
.
cuda_device_context
(),
out_linear_out_data
,
x_data
,
out_linear_bias_data
,
ln_scale_2_data
,
ln_bias_2_data
,
bias_dropout_residual_out_data
,
dropout_mask_out_data
,
final_out_data
,
ln_mean_2_data
,
ln_var_2_data
);
if
(
pre_layer_norm
)
{
// output = (residual + dropout(input + bias))
fused_dropout_layernorm_helper
.
ResidualDropoutBias
(
ctx
.
cuda_device_context
(),
out_linear_out_data
,
x_data
,
out_linear_bias_data
,
final_out_data
,
dropout_mask_out_data
);
}
else
{
auto
*
ln_scale_2_data
=
(
ln_scale_2
==
nullptr
?
nullptr
:
ln_scale_2
->
data
<
U
>
());
auto
*
ln_bias_2_data
=
(
ln_bias_2
==
nullptr
?
nullptr
:
ln_bias_2
->
data
<
U
>
());
auto
*
bias_dropout_residual_out_data
=
bias_dropout_residual_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
ln_mean_2_data
=
ln_mean_2
->
mutable_data
<
U
>
(
ctx
.
GetPlace
());
auto
*
ln_var_2_data
=
ln_var_2
->
mutable_data
<
U
>
(
ctx
.
GetPlace
());
// output = layernorm(residual + dropout(input + bias))
fused_dropout_layernorm_helper
.
LayernormResidualDropoutBias
(
ctx
.
cuda_device_context
(),
out_linear_out_data
,
x_data
,
out_linear_bias_data
,
ln_scale_2_data
,
ln_bias_2_data
,
bias_dropout_residual_out_data
,
dropout_mask_out_data
,
final_out_data
,
ln_mean_2_data
,
ln_var_2_data
);
}
}
};
...
...
@@ -271,10 +276,7 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto
*
src_mask_out_data
=
(
src_mask
==
nullptr
)
?
nullptr
:
src_mask_out
->
data
<
T
>
();
auto
*
out_linear_out_data
=
out_linear_out
->
data
<
T
>
();
auto
*
ln_2_mean_data
=
ln_2_mean
->
data
<
U
>
();
auto
*
ln_2_var_data
=
ln_2_var
->
data
<
U
>
();
auto
*
dropout_mask_out_data
=
dropout_mask_out
->
data
<
uint8_t
>
();
auto
*
bias_dropout_residual_out_data
=
bias_dropout_residual_out
->
data
<
T
>
();
// output's grad
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
...
...
@@ -312,8 +314,6 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto
*
d_fmha_out_data
=
d_fmha_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_out_linear_out_data
=
d_out_linear_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_bias_dropout_residual_out_data
=
d_bias_dropout_residual_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// parameter grad
auto
*
d_qkv_weight
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"QKVW"
));
...
...
@@ -331,12 +331,6 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
d_out_linear_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_out_linear_bias_data
=
d_out_linear_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_ln_2_scale_data
=
(
d_ln_2_scale
==
nullptr
?
nullptr
:
d_ln_2_scale
->
mutable_data
<
U
>
(
ctx
.
GetPlace
()));
auto
*
d_ln_2_bias_data
=
(
d_ln_2_bias
==
nullptr
?
nullptr
:
d_ln_2_bias
->
mutable_data
<
U
>
(
ctx
.
GetPlace
()));
const
auto
input_x_dims
=
input_x
->
dims
();
const
auto
qkv_w_dims
=
qkv_weight
->
dims
();
...
...
@@ -382,11 +376,30 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
ctx
.
cuda_device_context
(),
bsz_seq
,
dim_embed
,
dropout_param2
,
ln2epsilon
);
fused_dropout_layernorm_helper
.
LayernormResidualDropoutBiasGrad
(
ctx
.
cuda_device_context
(),
d_y_data
,
bias_dropout_residual_out_data
,
dropout_mask_out_data
,
ln_2_scale_data
,
ln_2_mean_data
,
ln_2_var_data
,
d_bias_dropout_residual_out_data
,
d_ln_2_scale_data
,
d_ln_2_bias_data
,
d_out_linear_out_data
,
d_out_linear_bias_data
,
d_residual_data
);
if
(
pre_layer_norm
)
{
fused_dropout_layernorm_helper
.
ResidualDropoutBiasGrad
(
ctx
.
cuda_device_context
(),
d_y_data
,
dropout_mask_out_data
,
d_out_linear_out_data
,
d_residual_data
,
d_out_linear_bias_data
);
}
else
{
auto
*
ln_2_mean_data
=
ln_2_mean
->
data
<
U
>
();
auto
*
ln_2_var_data
=
ln_2_var
->
data
<
U
>
();
auto
*
bias_dropout_residual_out_data
=
bias_dropout_residual_out
->
data
<
T
>
();
auto
*
d_ln_2_scale_data
=
(
d_ln_2_scale
==
nullptr
?
nullptr
:
d_ln_2_scale
->
mutable_data
<
U
>
(
ctx
.
GetPlace
()));
auto
*
d_ln_2_bias_data
=
(
d_ln_2_bias
==
nullptr
?
nullptr
:
d_ln_2_bias
->
mutable_data
<
U
>
(
ctx
.
GetPlace
()));
auto
*
d_bias_dropout_residual_out_data
=
d_bias_dropout_residual_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
fused_dropout_layernorm_helper
.
LayernormResidualDropoutBiasGrad
(
ctx
.
cuda_device_context
(),
d_y_data
,
bias_dropout_residual_out_data
,
dropout_mask_out_data
,
ln_2_scale_data
,
ln_2_mean_data
,
ln_2_var_data
,
d_bias_dropout_residual_out_data
,
d_ln_2_scale_data
,
d_ln_2_bias_data
,
d_out_linear_out_data
,
d_out_linear_bias_data
,
d_residual_data
);
}
out_linear_compute
.
ComputeBackward
(
fmha_out_data
,
out_linear_weight_data
,
d_out_linear_out_data
,
d_fmha_out_data
,
...
...
python/paddle/fluid/tests/unittests/test_fused_attention_op.py
浏览文件 @
ad44a40c
...
...
@@ -155,8 +155,8 @@ class TestFusedAttentionOp(OpTest):
residual_out
=
residual
+
self
.
dropout
(
out
)
if
not
self
.
pre_layer_norm
:
final_out
=
self
.
norm1
(
residual_out
)
if
self
.
pre_layer_norm
:
final_out
=
self
.
norm2
(
residual_out
)
else
:
final_out
=
residual_out
paddle
.
autograd
.
backward
(
[
final_out
],
[
paddle
.
to_tensor
(
self
.
dout
)],
retain_graph
=
True
)
return
final_out
,
tensor_query
.
grad
...
...
@@ -219,9 +219,9 @@ class TestFusedAttentionOp(OpTest):
final_out_ref
,
x_grad_ref
=
self
.
GetBaselineOut
()
final_out
,
x_grad
=
self
.
GetFusedAttentionOut
()
np
.
testing
.
assert_allclose
(
final_out_ref
,
final_out
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
5
)
final_out_ref
,
final_out
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
4
)
np
.
testing
.
assert_allclose
(
x_grad_ref
,
x_grad
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
5
)
x_grad_ref
,
x_grad
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
4
)
class
TestFusedAttentionOpPreLn
(
TestFusedAttentionOp
):
...
...
@@ -249,9 +249,9 @@ class TestFusedAttentionOpPreLn(TestFusedAttentionOp):
final_out_ref
,
x_grad_ref
=
self
.
GetBaselineOut
()
final_out
,
x_grad
=
self
.
GetFusedAttentionOut
()
np
.
testing
.
assert_allclose
(
final_out_ref
,
final_out
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
1
)
final_out_ref
,
final_out
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
4
)
np
.
testing
.
assert_allclose
(
x_grad_ref
,
x_grad
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
1
)
x_grad_ref
,
x_grad
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
4
)
class
TestFusedAttentionOpNoneAttnMask
(
TestFusedAttentionOp
):
...
...
@@ -279,9 +279,9 @@ class TestFusedAttentionOpNoneAttnMask(TestFusedAttentionOp):
final_out_ref
,
x_grad_ref
=
self
.
GetBaselineOut
()
final_out
,
x_grad
=
self
.
GetFusedAttentionOut
()
np
.
testing
.
assert_allclose
(
final_out_ref
,
final_out
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
1
)
final_out_ref
,
final_out
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
4
)
np
.
testing
.
assert_allclose
(
x_grad_ref
,
x_grad
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
1
)
x_grad_ref
,
x_grad
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-
4
)
class
TestFusedAttentionOpFp16
(
TestFusedAttentionOp
):
...
...
python/paddle/fluid/tests/unittests/test_fused_attention_op_api.py
浏览文件 @
ad44a40c
...
...
@@ -138,9 +138,11 @@ def compute_reference(pre_layer_norm, query, attn_mask, ln_scale, ln_bias,
out_linear_bias_out
=
out_linear_out
+
out_linear_bias
out_linear_bias_dropout_out
=
out_linear_bias_out
out_linear_bias_dropout_residual_out
=
query
+
out_linear_bias_dropout_out
out_linear_bias_dropout_residual_ln_out
=
layer_norm
(
out_linear_bias_dropout_residual_out
,
True
,
True
,
ln_2_scale
,
ln_2_bias
)
return
out_linear_bias_dropout_residual_ln_out
if
not
pre_layer_norm
:
out_linear_bias_dropout_residual_out
=
layer_norm
(
out_linear_bias_dropout_residual_out
,
True
,
True
,
ln_2_scale
,
ln_2_bias
)
return
out_linear_bias_dropout_residual_out
class
TestFusedAttentionAPI
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录