cudnn_lstm_op.cc 14.9 KB
Newer Older
P
phlrain 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuhongyu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
L
liuhongyu 已提交
16
#include <string>
17

C
chengduozh 已提交
18
#include "paddle/fluid/framework/op_registry.h"
G
GaoWei8 已提交
19
#include "paddle/fluid/framework/op_version_registry.h"
L
liuhongyu 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class CudnnLSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
G
GaoWei8 已提交
29 30 31 32 33 34 35 36 37 38
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasInput("InitH"), "Input", "InitH", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasInput("InitC"), "Input", "InitC", "CudnnLSTM");

    OP_INOUT_CHECK(ctx->HasOutput("Reserve"), "Output", "Reserve", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("StateOut"), "Output", "StateOut",
                   "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("LastH"), "Output", "LastH", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("LastC"), "Output", "LastC", "CudnnLSTM");
L
liuhongyu 已提交
39 40

    auto in_dims = ctx->GetInputDim("Input");
G
GaoWei8 已提交
41 42 43
    auto init_h_dims = ctx->GetInputDim("InitH");
    auto init_c_dims = ctx->GetInputDim("InitC");

G
GaoWei8 已提交
44 45 46 47 48
    PADDLE_ENFORCE_EQ(in_dims.size(), 3,
                      platform::errors::InvalidArgument(
                          "The rank of Input in CudnnLSTM  must be 3. But "
                          "received Input's rank is %d.",
                          in_dims.size()));
G
GaoWei8 已提交
49
    PADDLE_ENFORCE_EQ(init_h_dims.size(), 3,
G
GaoWei8 已提交
50 51 52
                      platform::errors::InvalidArgument(
                          "The rank of InitH in CudnnLSTM  must be 3. But "
                          "received InitH's rank is %d.",
G
GaoWei8 已提交
53
                          init_h_dims.size()));
G
GaoWei8 已提交
54

55 56 57 58 59 60 61 62 63 64
    if (ctx->HasInput("SequenceLength")) {
      auto seq_dims = ctx->GetInputDim("SequenceLength");
      PADDLE_ENFORCE_EQ(
          in_dims[1], seq_dims[0],
          platform::errors::InvalidArgument(
              "The size of SequenceLength has to equal the batch_size. But "
              "received batch_size is %d and the size of SequenceLength is %d.",
              in_dims[1], seq_dims[0]));
    }

G
GaoWei8 已提交
65 66 67 68 69 70 71 72 73
    PADDLE_ENFORCE_EQ(
        in_dims[1], init_h_dims[1],
        platform::errors::InvalidArgument(
            "The in_dims[1] (Input dims) and init_h_dims[1] (InitH "
            "dims) should be equal. But "
            "received in_dims[1] is %d and init_h_dims[1] is %d.",
            in_dims[1], init_h_dims[1]));

    PADDLE_ENFORCE_EQ(init_c_dims, init_h_dims,
G
GaoWei8 已提交
74
                      platform::errors::InvalidArgument(
G
GaoWei8 已提交
75 76 77 78
                          "The InitC dims and InitH "
                          "dims should be equal. But "
                          "received init_c_dims is %d and init_h_dims is %d.",
                          init_c_dims, init_h_dims));
L
liuhongyu 已提交
79

80 81
    auto out_dims = in_dims;
    auto hidden_size = ctx->Attrs().Get<int>("hidden_size");
G
GaoWei8 已提交
82 83
    bool is_bidirec = ctx->Attrs().Get<bool>("is_bidirec");
    out_dims[2] = is_bidirec ? hidden_size * 2 : hidden_size;
84
    ctx->SetOutputDim("Out", out_dims);
G
GaoWei8 已提交
85 86
    ctx->SetOutputDim("LastH", init_c_dims);
    ctx->SetOutputDim("LastC", init_h_dims);
G
GaoWei8 已提交
87 88 89 90 91 92 93 94
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
L
liuhongyu 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  }
};

class CudnnLSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Input",
        "(Tensor) RNN input tensor, which support variable-time length input "
        "sequence."
        "The shape of the Tensor MUST be ( seq_len * batch_size * input_size)"
        "seq_len is the total time step in this mini-batch (CAN be change in "
        "different batch)"
        "batch_size is the instance number of this batch"
        "input_size is the hidden size of the input."
G
GaoWei8 已提交
110
        "input_size and the hidden_size in the next may not be same");
L
liuhongyu 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    AddInput("InitH",
             "(Tensor) the initial hidden state of the LSTM"
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)");
    AddInput("InitC",
             "(Tensor) the initial cell state of the LSTm "
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)");
    AddInput("W",
             "(Tensor) the learnable hidden-hidden weights."
             " The shape is (N), where N is total weight size of the LSTM. "
G
GaoWei8 已提交
126 127 128 129 130 131 132
             " cudnn concatenate all the weight to one Tensor")
        .AsDispensable();
    AddInput("WeightList",
             "(vector<Tensor>), stores weight and bias data when the weight "
             "use the list format. ")
        .AsDispensable()
        .AsDuplicable();
133 134 135 136 137 138
    AddInput("SequenceLength",
             "(Tensor) When the input data is padding, "
             "set this parameter. This parameter represents "
             "the variable sequence lengths in a batch. "
             "The size of the vector has to equal the batch_size.")
        .AsDispensable();
G
GaoWei8 已提交
139 140 141 142 143 144 145
    AddOutput("Reserve",
              "(Tensor, a temporary output Tensor to store the reserve_data "
              "of cudnn kernel.")
        .AsIntermediate();
    AddOutput("StateOut",
              "Share memory with State. "
              "Store the global drop state when training");
L
liuhongyu 已提交
146 147 148 149 150 151
    AddOutput("Out",
              "(Tensor) the hidden state of LSTM operator. "
              "The shape is ( seq_len x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be ( seq_len x "
              "batch_size x hidden_size * 2) ");
G
GaoWei8 已提交
152
    AddOutput("LastH",
L
liuhongyu 已提交
153 154 155 156 157
              "(Tensor) the hidden state of the last step. "
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size)");
G
GaoWei8 已提交
158
    AddOutput("LastC",
L
liuhongyu 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171
              "(Tensor) the cell state of the last step"
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirect is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size*2)");
    AddAttr<float>(
        "dropout_prob",
        "dropout prob of the dropout op"
        "the dropout ONLY work between lstm layers, not between time steps"
        "There is no dropout work on the Out tensor")
        .SetDefault(0.0);
    AddAttr<bool>("is_bidirec",
                  "is_bidirec"
T
tianshuo78520a 已提交
172
                  "if it is bidirectional rnn"
G
GaoWei8 已提交
173
                  "The will affect the shape of the Out, LastH, and LastC")
L
liuhongyu 已提交
174 175 176 177 178 179
        .SetDefault(false);
    AddAttr<int>("input_size", "input size ot the Input Tensor").SetDefault(10);
    AddAttr<int>("hidden_size", "hidden size of the LSTM").SetDefault(100);
    AddAttr<int>("num_layers", "the total layer number of the LSTM")
        .SetDefault(1);
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
G
GaoWei8 已提交
180
    AddAttr<int>("seed", "seed to used if fix_seed is True").SetDefault(0);
L
liuhongyu 已提交
181 182 183 184 185 186 187
    AddComment(R"DOC(
CUDNN LSTM implementation

A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
188
$$ i_t = sigmoid(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
L
liuhongyu 已提交
189

P
phlrain 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
$$ f_t = sigmoid(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

$$ o_t = sigmoid(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

$$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

$$ h_t = o_t \\odot tanh(c_t) $$

- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
  of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
  and cell activation vectors, respectively, all of which have the same size as
  the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- `tanh` is the activation functions.
- $\tilde{c_t}$ is also called candidate hidden state,
  which is computed based on the current input and the previous hidden state.

Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
L
liuhongyu 已提交
213 214 215 216 217 218 219 220 221 222 223 224
X represensts a matrix multiplication


)DOC");
  }
};

class CudnnLSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
G
GaoWei8 已提交
225 226 227
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "CudnnLSTMGrad");
    OP_INOUT_CHECK(ctx->HasInput("InitH"), "Input", "InitH", "CudnnLSTMGrad");
    OP_INOUT_CHECK(ctx->HasInput("InitC"), "Input", "InitC", "CudnnLSTMGrad");
L
liuhongyu 已提交
228 229 230 231 232 233 234 235 236

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name)) {
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
      }
    };

    SetOutGradDim("Input");
G
GaoWei8 已提交
237 238 239 240
    if (ctx->HasInputs("WeightList")) {
      ctx->SetOutputsDim(framework::GradVarName("WeightList"),
                         ctx->GetInputsDim("WeightList"));
    }
L
liuhongyu 已提交
241 242 243
    SetOutGradDim("InitH");
    SetOutGradDim("InitC");
  }
G
GaoWei8 已提交
244 245 246 247 248 249
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
L
liuhongyu 已提交
250 251
};

H
hong 已提交
252 253
template <typename T>
class CudnnLSTMGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
254
 public:
H
hong 已提交
255
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
256 257

 protected:
258
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
259
    op->SetType("cudnn_lstm_grad");
H
hong 已提交
260 261 262
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("InitH", this->Input("InitH"));
    op->SetInput("InitC", this->Input("InitC"));
G
GaoWei8 已提交
263 264 265
    if (this->HasInput("WeightList")) {
      op->SetInput("WeightList", this->Input("WeightList"));
    }
266 267 268
    if (this->HasInput("SequenceLength")) {
      op->SetInput("SequenceLength", this->Input("SequenceLength"));
    }
G
GaoWei8 已提交
269 270
    op->SetInput("Reserve", this->Output("Reserve"));
    op->SetInput("StateOut", this->Output("StateOut"));
H
hong 已提交
271 272
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
G
GaoWei8 已提交
273 274
    op->SetInput(framework::GradVarName("LastC"), this->OutputGrad("LastC"));
    op->SetInput(framework::GradVarName("LastH"), this->OutputGrad("LastH"));
H
hong 已提交
275

G
GaoWei8 已提交
276 277 278 279 280
    if (this->HasInput("WeightList")) {
      op->SetOutput(framework::GradVarName("WeightList"),
                    this->InputGrad("WeightList", false));
    }

H
hong 已提交
281 282 283 284
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("InitH"), this->InputGrad("InitH"));
    op->SetOutput(framework::GradVarName("InitC"), this->InputGrad("InitC"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
285 286 287
  }
};

C
chengduozh 已提交
288 289 290 291
template <typename T>
class NotImpleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
292 293
    PADDLE_THROW(platform::errors::Unimplemented(
        "CPU is not support for this kernel now. Will be add in the future"));
C
chengduozh 已提交
294 295 296
  }
};

L
liuhongyu 已提交
297 298 299 300
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduozh 已提交
301
REGISTER_OPERATOR(cudnn_lstm, ops::CudnnLSTMOp, ops::CudnnLSTMOpMaker,
H
hong 已提交
302 303
                  ops::CudnnLSTMGradOpMaker<paddle::framework::OpDesc>,
                  ops::CudnnLSTMGradOpMaker<paddle::imperative::OpBase>);
C
chengduozh 已提交
304
REGISTER_OPERATOR(cudnn_lstm_grad, ops::CudnnLSTMGradOp);
L
liuhongyu 已提交
305

C
chengduozh 已提交
306 307
REGISTER_OP_CPU_KERNEL(cudnn_lstm, ops::NotImpleKernel<float>);
REGISTER_OP_CPU_KERNEL(cudnn_lstm_grad, ops::NotImpleKernel<float>);
G
GaoWei8 已提交
308 309 310 311 312

// TODO(Shixiaowei02) Add ModifyInput support
REGISTER_OP_VERSION(cudnn_lstm)
    .AddCheckpoint(
        R"ROC(
313 314 315
              Upgrade cudnn_lstm add new inputs [WeightList, SequenceLength], modify the input [W] to dispensable, delete the input [Cache].
              Upgrade cudnn_lstm add new outputs [StateOut, Reserve, LastC, LastH], delete output [last_c, last_h].
              Upgrade cudnn_lstm modify the attr [seed] default value to 0, delete the attr [max_len].)ROC",
G
GaoWei8 已提交
316 317 318 319 320 321 322 323
        paddle::framework::compatible::OpVersionDesc()
            .NewInput(
                "WeightList",
                "The WeightList stores weight and bias data. WeightList is "
                "dispensable.")
            .NewInput("SequenceLength",
                      "When the input data is padding, set this parameter. "
                      "SequenceLength is dispensable.")
324 325 326 327 328 329
            .ModifyInput("W",
                         "The new LSTM use WeightList instead of W. The W "
                         "concatenate all the weight to one Tensor.")
            .DeleteInput("Cache",
                         "The new LSTM use the Reserve Output to store the "
                         "data of dropout.")
G
GaoWei8 已提交
330 331
            .NewOutput("StateOut", "Store the global drop state when training")
            .NewOutput("Reserve",
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
                       "A temporary output Tensor to store the reserve_data")
            .DeleteOutput(
                "last_c",
                "Modify the name of the output from 'last_c' to 'LastC'.")
            .NewOutput("LastC", "The cell state of the last step.")
            .DeleteOutput(
                "last_h",
                "Modify the name of the output from 'last_h' to 'LastH'.")
            .NewOutput("LastH", "The hidden state of the last step.")
            .ModifyAttr("seed",
                        "Set the default value of seed from '-1' to '0'.", 0)
            .DeleteAttr("max_len",
                        "The length of Inputs is achieved form the input data "
                        "which is difficult to know the information in "
                        "advance."));