cudnn_lstm_op.cc 13.6 KB
Newer Older
P
phlrain 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuhongyu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
L
liuhongyu 已提交
16
#include <string>
C
chengduozh 已提交
17
#include "paddle/fluid/framework/op_registry.h"
G
GaoWei8 已提交
18
#include "paddle/fluid/framework/op_version_registry.h"
L
liuhongyu 已提交
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

class CudnnLSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
G
GaoWei8 已提交
28 29 30 31 32 33 34 35 36 37
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasInput("InitH"), "Input", "InitH", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasInput("InitC"), "Input", "InitC", "CudnnLSTM");

    OP_INOUT_CHECK(ctx->HasOutput("Reserve"), "Output", "Reserve", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("StateOut"), "Output", "StateOut",
                   "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("LastH"), "Output", "LastH", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("LastC"), "Output", "LastC", "CudnnLSTM");
L
liuhongyu 已提交
38 39

    auto in_dims = ctx->GetInputDim("Input");
G
GaoWei8 已提交
40 41 42
    auto init_h_dims = ctx->GetInputDim("InitH");
    auto init_c_dims = ctx->GetInputDim("InitC");

G
GaoWei8 已提交
43 44 45 46 47
    PADDLE_ENFORCE_EQ(in_dims.size(), 3,
                      platform::errors::InvalidArgument(
                          "The rank of Input in CudnnLSTM  must be 3. But "
                          "received Input's rank is %d.",
                          in_dims.size()));
G
GaoWei8 已提交
48
    PADDLE_ENFORCE_EQ(init_h_dims.size(), 3,
G
GaoWei8 已提交
49 50 51
                      platform::errors::InvalidArgument(
                          "The rank of InitH in CudnnLSTM  must be 3. But "
                          "received InitH's rank is %d.",
G
GaoWei8 已提交
52
                          init_h_dims.size()));
G
GaoWei8 已提交
53

54 55 56 57 58 59 60 61 62 63
    if (ctx->HasInput("SequenceLength")) {
      auto seq_dims = ctx->GetInputDim("SequenceLength");
      PADDLE_ENFORCE_EQ(
          in_dims[1], seq_dims[0],
          platform::errors::InvalidArgument(
              "The size of SequenceLength has to equal the batch_size. But "
              "received batch_size is %d and the size of SequenceLength is %d.",
              in_dims[1], seq_dims[0]));
    }

G
GaoWei8 已提交
64 65 66 67 68 69 70 71 72
    PADDLE_ENFORCE_EQ(
        in_dims[1], init_h_dims[1],
        platform::errors::InvalidArgument(
            "The in_dims[1] (Input dims) and init_h_dims[1] (InitH "
            "dims) should be equal. But "
            "received in_dims[1] is %d and init_h_dims[1] is %d.",
            in_dims[1], init_h_dims[1]));

    PADDLE_ENFORCE_EQ(init_c_dims, init_h_dims,
G
GaoWei8 已提交
73
                      platform::errors::InvalidArgument(
G
GaoWei8 已提交
74 75 76 77
                          "The InitC dims and InitH "
                          "dims should be equal. But "
                          "received init_c_dims is %d and init_h_dims is %d.",
                          init_c_dims, init_h_dims));
L
liuhongyu 已提交
78

79 80
    auto out_dims = in_dims;
    auto hidden_size = ctx->Attrs().Get<int>("hidden_size");
G
GaoWei8 已提交
81 82
    bool is_bidirec = ctx->Attrs().Get<bool>("is_bidirec");
    out_dims[2] = is_bidirec ? hidden_size * 2 : hidden_size;
83
    ctx->SetOutputDim("Out", out_dims);
G
GaoWei8 已提交
84 85
    ctx->SetOutputDim("LastH", init_c_dims);
    ctx->SetOutputDim("LastC", init_h_dims);
G
GaoWei8 已提交
86 87 88 89 90 91 92 93
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
L
liuhongyu 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  }
};

class CudnnLSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Input",
        "(Tensor) RNN input tensor, which support variable-time length input "
        "sequence."
        "The shape of the Tensor MUST be ( seq_len * batch_size * input_size)"
        "seq_len is the total time step in this mini-batch (CAN be change in "
        "different batch)"
        "batch_size is the instance number of this batch"
        "input_size is the hidden size of the input."
G
GaoWei8 已提交
109
        "input_size and the hidden_size in the next may not be same");
L
liuhongyu 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    AddInput("InitH",
             "(Tensor) the initial hidden state of the LSTM"
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)");
    AddInput("InitC",
             "(Tensor) the initial cell state of the LSTm "
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)");
    AddInput("W",
             "(Tensor) the learnable hidden-hidden weights."
             " The shape is (N), where N is total weight size of the LSTM. "
G
GaoWei8 已提交
125 126 127 128 129 130 131
             " cudnn concatenate all the weight to one Tensor")
        .AsDispensable();
    AddInput("WeightList",
             "(vector<Tensor>), stores weight and bias data when the weight "
             "use the list format. ")
        .AsDispensable()
        .AsDuplicable();
132 133 134 135 136 137
    AddInput("SequenceLength",
             "(Tensor) When the input data is padding, "
             "set this parameter. This parameter represents "
             "the variable sequence lengths in a batch. "
             "The size of the vector has to equal the batch_size.")
        .AsDispensable();
G
GaoWei8 已提交
138 139 140 141 142 143 144
    AddOutput("Reserve",
              "(Tensor, a temporary output Tensor to store the reserve_data "
              "of cudnn kernel.")
        .AsIntermediate();
    AddOutput("StateOut",
              "Share memory with State. "
              "Store the global drop state when training");
L
liuhongyu 已提交
145 146 147 148 149 150
    AddOutput("Out",
              "(Tensor) the hidden state of LSTM operator. "
              "The shape is ( seq_len x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be ( seq_len x "
              "batch_size x hidden_size * 2) ");
G
GaoWei8 已提交
151
    AddOutput("LastH",
L
liuhongyu 已提交
152 153 154 155 156
              "(Tensor) the hidden state of the last step. "
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size)");
G
GaoWei8 已提交
157
    AddOutput("LastC",
L
liuhongyu 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170
              "(Tensor) the cell state of the last step"
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirect is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size*2)");
    AddAttr<float>(
        "dropout_prob",
        "dropout prob of the dropout op"
        "the dropout ONLY work between lstm layers, not between time steps"
        "There is no dropout work on the Out tensor")
        .SetDefault(0.0);
    AddAttr<bool>("is_bidirec",
                  "is_bidirec"
T
tianshuo78520a 已提交
171
                  "if it is bidirectional rnn"
G
GaoWei8 已提交
172
                  "The will affect the shape of the Out, LastH, and LastC")
L
liuhongyu 已提交
173 174 175 176 177 178
        .SetDefault(false);
    AddAttr<int>("input_size", "input size ot the Input Tensor").SetDefault(10);
    AddAttr<int>("hidden_size", "hidden size of the LSTM").SetDefault(100);
    AddAttr<int>("num_layers", "the total layer number of the LSTM")
        .SetDefault(1);
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
G
GaoWei8 已提交
179
    AddAttr<int>("seed", "seed to used if fix_seed is True").SetDefault(0);
L
liuhongyu 已提交
180 181 182 183 184 185 186
    AddComment(R"DOC(
CUDNN LSTM implementation

A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
187
$$ i_t = sigmoid(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
L
liuhongyu 已提交
188

P
phlrain 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
$$ f_t = sigmoid(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

$$ o_t = sigmoid(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

$$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

$$ h_t = o_t \\odot tanh(c_t) $$

- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
  of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
  and cell activation vectors, respectively, all of which have the same size as
  the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- `tanh` is the activation functions.
- $\tilde{c_t}$ is also called candidate hidden state,
  which is computed based on the current input and the previous hidden state.

Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
L
liuhongyu 已提交
212 213 214 215 216 217 218 219 220 221 222 223
X represensts a matrix multiplication


)DOC");
  }
};

class CudnnLSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
G
GaoWei8 已提交
224 225 226
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "CudnnLSTMGrad");
    OP_INOUT_CHECK(ctx->HasInput("InitH"), "Input", "InitH", "CudnnLSTMGrad");
    OP_INOUT_CHECK(ctx->HasInput("InitC"), "Input", "InitC", "CudnnLSTMGrad");
L
liuhongyu 已提交
227 228 229 230 231 232 233 234 235

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name)) {
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
      }
    };

    SetOutGradDim("Input");
G
GaoWei8 已提交
236 237 238 239
    if (ctx->HasInputs("WeightList")) {
      ctx->SetOutputsDim(framework::GradVarName("WeightList"),
                         ctx->GetInputsDim("WeightList"));
    }
L
liuhongyu 已提交
240 241 242
    SetOutGradDim("InitH");
    SetOutGradDim("InitC");
  }
G
GaoWei8 已提交
243 244 245 246 247 248
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
L
liuhongyu 已提交
249 250
};

H
hong 已提交
251 252
template <typename T>
class CudnnLSTMGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
253
 public:
H
hong 已提交
254
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
255 256

 protected:
257
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
258
    op->SetType("cudnn_lstm_grad");
H
hong 已提交
259 260 261
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("InitH", this->Input("InitH"));
    op->SetInput("InitC", this->Input("InitC"));
G
GaoWei8 已提交
262 263 264
    if (this->HasInput("WeightList")) {
      op->SetInput("WeightList", this->Input("WeightList"));
    }
265 266 267
    if (this->HasInput("SequenceLength")) {
      op->SetInput("SequenceLength", this->Input("SequenceLength"));
    }
G
GaoWei8 已提交
268 269
    op->SetInput("Reserve", this->Output("Reserve"));
    op->SetInput("StateOut", this->Output("StateOut"));
H
hong 已提交
270 271
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
G
GaoWei8 已提交
272 273
    op->SetInput(framework::GradVarName("LastC"), this->OutputGrad("LastC"));
    op->SetInput(framework::GradVarName("LastH"), this->OutputGrad("LastH"));
H
hong 已提交
274

G
GaoWei8 已提交
275 276 277 278 279
    if (this->HasInput("WeightList")) {
      op->SetOutput(framework::GradVarName("WeightList"),
                    this->InputGrad("WeightList", false));
    }

H
hong 已提交
280 281 282 283
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("InitH"), this->InputGrad("InitH"));
    op->SetOutput(framework::GradVarName("InitC"), this->InputGrad("InitC"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
284 285 286
  }
};

C
chengduozh 已提交
287 288 289 290
template <typename T>
class NotImpleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
291 292
    PADDLE_THROW(platform::errors::Unimplemented(
        "CPU is not support for this kernel now. Will be add in the future"));
C
chengduozh 已提交
293 294 295
  }
};

L
liuhongyu 已提交
296 297 298 299
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduozh 已提交
300
REGISTER_OPERATOR(cudnn_lstm, ops::CudnnLSTMOp, ops::CudnnLSTMOpMaker,
H
hong 已提交
301 302
                  ops::CudnnLSTMGradOpMaker<paddle::framework::OpDesc>,
                  ops::CudnnLSTMGradOpMaker<paddle::imperative::OpBase>);
C
chengduozh 已提交
303
REGISTER_OPERATOR(cudnn_lstm_grad, ops::CudnnLSTMGradOp);
L
liuhongyu 已提交
304

C
chengduozh 已提交
305 306
REGISTER_OP_CPU_KERNEL(cudnn_lstm, ops::NotImpleKernel<float>);
REGISTER_OP_CPU_KERNEL(cudnn_lstm_grad, ops::NotImpleKernel<float>);
G
GaoWei8 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

// TODO(Shixiaowei02) Add ModifyInput support
REGISTER_OP_VERSION(cudnn_lstm)
    .AddCheckpoint(
        R"ROC(
              Upgrade cudnn_lstm add a new input [WeightList] and modify input [W] to dispensable.)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewInput(
                "WeightList",
                "The WeightList stores weight and bias data. WeightList is "
                "dispensable.")
            .NewInput("SequenceLength",
                      "When the input data is padding, set this parameter. "
                      "SequenceLength is dispensable.")
            .NewOutput("StateOut", "Store the global drop state when training")
            .NewOutput("Reserve",
                       "A temporary output Tensor to store the reserve_data"));