activation_op_xpu.cc 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include <string>
18 19 20

#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
21
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename Functor>
class XPUActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    functor(context);
  }
};

template <typename Functor>
class XPUActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    functor(context);
  }
};

58
template <typename DeviceContext, typename T, typename XPUT>
T
TTerror 已提交
59 60
void xpu_activation_forward(
    const framework::ExecutionContext &ctx,
61
    std::function<int(xpu::Context *, const XPUT *, XPUT *, int)> func) {
62 63
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
64 65
  const XPUT *x_data = reinterpret_cast<const XPUT *>(x->data<T>());
  XPUT *y_data = reinterpret_cast<XPUT *>(y->mutable_data<T>(ctx.GetPlace()));
P
procr 已提交
66

T
TTerror 已提交
67 68 69 70 71 72
  auto xpu_context = ctx.device_context<DeviceContext>().x_context();
  int r = func(xpu_context, x_data, y_data, x->numel());
  PADDLE_ENFORCE_EQ(
      r, xpu::Error_t::SUCCESS,
      platform::errors::External("XPU activation op return wrong value[%d %s].",
                                 r, XPUAPIErrorMsg[r]));
73 74
}

75 76 77 78 79 80
template <typename DeviceContext, typename T, typename XPUT>
void xpu_activation_backward(
    const framework::ExecutionContext &ctx,
    std::function<int(xpu::Context *, const XPUT *, const XPUT *, const XPUT *,
                      XPUT *, int)>
        func) {
81 82 83 84 85
  /* TODO: relu tanh sigmoid are inplace */
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Input<Tensor>("Out");
  auto *dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
  auto *dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
86 87 88 89 90 91 92
  const XPUT *x_data = nullptr;
  const XPUT *y_data = nullptr;
  const XPUT *y_grad = nullptr;
  if (x != nullptr) x_data = reinterpret_cast<const XPUT *>(x->data<T>());
  if (y != nullptr) y_data = reinterpret_cast<const XPUT *>(y->data<T>());
  if (dOut != nullptr) y_grad = reinterpret_cast<const XPUT *>(dOut->data<T>());
  XPUT *x_grad = reinterpret_cast<XPUT *>(dX->mutable_data<T>(ctx.GetPlace()));
93
  auto xpu_context = ctx.device_context<DeviceContext>().x_context();
P
procr 已提交
94

T
TTerror 已提交
95 96
  int r = func(xpu_context, x_data, y_data, y_grad, x_grad, dX->numel());
  PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
97
                    platform::errors::External(
T
TTerror 已提交
98 99
                        "XPU activation grad op return wrong value[%d %s].", r,
                        XPUAPIErrorMsg[r]));
100 101
}

T
TTerror 已提交
102
template <typename T>
103
struct XPUAbsFunctor : public BaseActivationFunctor<T> {
104
  using XPUType = typename XPUTypeTrait<T>::Type;
105
  void operator()(const framework::ExecutionContext &ctx) const {
106
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
107
        ctx, xpu::abs<XPUType>);
108 109 110
  }
};

T
TTerror 已提交
111
template <typename T>
112
struct XPUAbsGradFunctor : public BaseActivationFunctor<T> {
113
  using XPUType = typename XPUTypeTrait<T>::Type;
114
  void operator()(const framework::ExecutionContext &ctx) const {
115 116
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::abs_grad<XPUType>);
117 118 119 120
  }
};

template <typename T>
121
struct XPUExpFunctor : public BaseActivationFunctor<T> {
122
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
123
  void operator()(const framework::ExecutionContext &ctx) const {
124
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
125
        ctx, xpu::exp<XPUType>);
T
TTerror 已提交
126 127 128
  }
};

129
template <typename T>
T
TTerror 已提交
130
struct XPULogFunctor : public BaseActivationFunctor<T> {
131
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
132
  void operator()(const framework::ExecutionContext &ctx) const {
133 134
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::log<XPUType>);
T
TTerror 已提交
135 136 137
  }
};

138
template <typename T>
139
struct XPUReciprocalFunctor : public BaseActivationFunctor<T> {
140
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
141
  void operator()(const framework::ExecutionContext &ctx) const {
142
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
143
        ctx, xpu::reciprocal<XPUType>);
T
TTerror 已提交
144 145 146
  }
};

147
template <typename T>
148
struct XPUReciprocalGradFunctor : public BaseActivationFunctor<T> {
149
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
150
  void operator()(const framework::ExecutionContext &ctx) const {
151 152
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::reciprocal_grad<XPUType>);
T
TTerror 已提交
153 154 155
  }
};

156
template <typename T>
157
struct XPUReluFunctor : public BaseActivationFunctor<T> {
158
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
159
  void operator()(const framework::ExecutionContext &ctx) const {
160
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
161
        ctx, xpu::relu<XPUType>);
T
TTerror 已提交
162 163 164
  }
};

165
template <typename T>
166 167
struct XPUReluGradFunctor : public BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
168
  void operator()(const framework::ExecutionContext &ctx) const {
169 170
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::relu_grad<XPUType>);
T
TTerror 已提交
171 172 173
  }
};

P
procr 已提交
174
template <typename T>
175
struct XPUSigmoidFunctor : public BaseActivationFunctor<T> {
176
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
177
  void operator()(const framework::ExecutionContext &ctx) const {
178
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
179
        ctx, xpu::sigmoid<XPUType>);
T
TTerror 已提交
180 181 182
  }
};

183
template <typename T>
184
struct XPUSigmoidGradFunctor : public BaseActivationFunctor<T> {
185
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
186
  void operator()(const framework::ExecutionContext &ctx) const {
187
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
188
        ctx, xpu::sigmoid_grad<XPUType>);
T
TTerror 已提交
189 190 191
  }
};

192
template <typename T>
193
struct XPUSqrtFunctor : public BaseActivationFunctor<T> {
194
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
195
  void operator()(const framework::ExecutionContext &ctx) const {
196 197
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::sqrt<XPUType>);
T
TTerror 已提交
198 199 200
  }
};

201
template <typename T>
202
struct XPUSqrtGradFunctor : public BaseActivationFunctor<T> {
203
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
204
  void operator()(const framework::ExecutionContext &ctx) const {
205
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
206
        ctx, xpu::sqrt_grad<XPUType>);
T
TTerror 已提交
207 208 209
  }
};

210
template <typename T>
211
struct XPUSquareFunctor : public BaseActivationFunctor<T> {
212
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
213
  void operator()(const framework::ExecutionContext &ctx) const {
214 215
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::square<XPUType>);
T
TTerror 已提交
216 217 218
  }
};

219
template <typename T>
T
TTerror 已提交
220
struct XPUSquareGradFunctor : public BaseActivationFunctor<T> {
221
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
222
  void operator()(const framework::ExecutionContext &ctx) const {
223 224
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::square_grad<XPUType>);
T
TTerror 已提交
225 226 227
  }
};

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
template <typename T>
struct XPUTanhFunctor : public BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::tanh<XPUType>);
  }
};

template <typename T>
struct XPUTanhGradFunctor : public BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::tanh_grad<XPUType>);
  }
};

template <typename T>
struct XPUHardSwishFunctor : public BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  void operator()(const framework::ExecutionContext &ctx) const {
    float threshold = ctx.Attr<float>("threshold");
    float scale = ctx.Attr<float>("scale");
    float offset = ctx.Attr<float>("offset");
    PADDLE_ENFORCE_EQ(threshold, 6.0f,
                      platform::errors::External(
                          "Not support threshold [%f] in XPU", threshold));
256 257 258
    PADDLE_ENFORCE_EQ(
        scale, 6.0f,
        platform::errors::External("Not support scale [%f] in XPU", scale));
259 260 261 262 263 264 265 266
    PADDLE_ENFORCE_EQ(
        offset, 3.0f,
        platform::errors::External("Not support offset [%f] in XPU", offset));
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::hard_swish<XPUType>);
  }
};

267
template <typename T>
T
TTerror 已提交
268
struct XPUHardSwishGradFunctor : public BaseActivationFunctor<T> {
269
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
270 271 272 273 274 275 276
  void operator()(const framework::ExecutionContext &ctx) const {
    float threshold = ctx.Attr<float>("threshold");
    float scale = ctx.Attr<float>("scale");
    float offset = ctx.Attr<float>("offset");
    PADDLE_ENFORCE_EQ(threshold, 6.0f,
                      platform::errors::External(
                          "Not support threshold [%f] in XPU", threshold));
277 278 279
    PADDLE_ENFORCE_EQ(
        scale, 6.0f,
        platform::errors::External("Not support scale [%f] in XPU", scale));
T
TTerror 已提交
280 281 282
    PADDLE_ENFORCE_EQ(
        offset, 3.0f,
        platform::errors::External("Not support offset [%f] in XPU", offset));
283 284
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::hard_swish_grad<XPUType>);
T
TTerror 已提交
285 286 287
  }
};

P
procr 已提交
288
template <typename T>
T
TTerror 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
struct XPULeakyReluFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Output<Tensor>("Out");
    float alpha = ctx.Attr<float>("alpha");
    const T *x_data = x->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());

    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
    int r = xpu::leaky_relu(xpu_context, x_data, y_data, x->numel(), alpha);
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External("XPU leaky_relu return wrong value[%d %s].",
                                   r, XPUAPIErrorMsg[r]));
  }
};

307
template <typename T>
T
TTerror 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
struct XPULeakyReluGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    float alpha = ctx.Attr<float>("alpha");
    const T *x_data = nullptr;
    const T *y_grad = nullptr;
    if (x != nullptr) x_data = x->data<T>();
    if (dOut != nullptr) y_grad = dOut->data<T>();
    T *x_grad = dX->mutable_data<T>(ctx.GetPlace());
    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();

    // The signs of x and y are the same,
    // y == nullptr here,
    // so we give 2 x to the api
    int r = xpu::leaky_relu_grad(
        xpu_context, reinterpret_cast<const float *>(x_data),
        reinterpret_cast<const float *>(x_data),
        reinterpret_cast<const float *>(y_grad),
        reinterpret_cast<float *>(x_grad), dX->numel(), alpha);
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "XPU leaky_relu_grad return wrong value[%d %s].", r,
                          XPUAPIErrorMsg[r]));
  }
};

337 338 339 340 341 342 343 344 345
template <typename T>
struct XPUPowFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Output<Tensor>("Out");
    auto pow_factor = ctx.Attr<float>("factor");
    const T *x_data = x->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());

346
    // allocate temp memory for factor on xpu
347 348
    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    xpu::ctx_guard RAII_GUARD(xpu_context);
    T *factor_data = RAII_GUARD.alloc_l3_or_gm<T>(1);
    PADDLE_ENFORCE_NOT_NULL(
        factor_data,
        platform::errors::External("XPU alloc_l3_or_gm returns nullptr"));
    memory::Copy(ctx.GetPlace(), static_cast<void *>(factor_data),
                 platform::CPUPlace(), static_cast<void *>(&pow_factor),
                 sizeof(T));

    // broadcast_pow(Context* ctx, const T* x, const T* y, T* z, const
    // std::vector<int>& xshape, const std::vector<int>& yshape);
    auto x_dims = phi::vectorize<int>(x->dims());
    int r = xpu::broadcast_pow(xpu_context, x_data, factor_data, y_data, x_dims,
                               {1});
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_pow");
  }
};

template <typename T>
struct XPUPowGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));

    const T *x_data = x->data<T>();
    const T *y_grad = dOut->data<T>();
    T *x_grad = dX->mutable_data<T>(ctx.GetPlace());

    // check dims: all dims should equal
    auto x_dims = phi::vectorize<int>(x->dims());
    auto dy_dims = phi::vectorize<int>(dOut->dims());
    auto dx_dims = phi::vectorize<int>(dX->dims());
382 383 384 385 386 387
    PADDLE_ENFORCE_EQ(
        x_dims, dy_dims,
        platform::errors::PreconditionNotMet("x_dims should match dy_dims."));
    PADDLE_ENFORCE_EQ(
        x_dims, dx_dims,
        platform::errors::PreconditionNotMet("x_dims should match dx_dims."));
388 389 390 391 392 393 394 395 396
    float pow_factor = ctx.Attr<float>("factor");

    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
    // int pow_grad(Context* ctx, const T* x, const T* dy, T* dx, int len, float
    // factor);
    int r = xpu::pow_grad(xpu_context, x_data, y_grad, x_grad, x->numel(),
                          pow_factor);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "pow_grad");
397 398 399
  }
};

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
template <typename T>
struct XPUSoftPlusFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Output<Tensor>("Out");
    const T *x_data = x->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());

    float beta = ctx.Attr<float>("beta");
    float threshold = ctx.Attr<float>("threshold");

    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
    int r =
        xpu::softplus(xpu_context, x_data, y_data, x->numel(), beta, threshold);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "softplus");
  }
};

template <typename T>
struct XPUSoftPlusGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    const T *x_data = x->data<T>();
    const T *y_grad = dOut->data<T>();
    T *x_grad = dX->mutable_data<T>(ctx.GetPlace());

    float beta = ctx.Attr<float>("beta");
    float threshold = ctx.Attr<float>("threshold");

    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
    int r = xpu::softplus_grad(
        xpu_context, reinterpret_cast<const float *>(x_data),
        reinterpret_cast<const float *>(
            x_data),  // softplus_grad do not need y_data
        reinterpret_cast<const float *>(y_grad),
        reinterpret_cast<float *>(x_grad), dX->numel(), beta, threshold);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "softplus_grad");
  }
};

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
template <typename T>
struct XPUSwishFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Output<Tensor>("Out");
    const T *x_data = x->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());

    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
    // int swish(Context* ctx, const T* x, T* y, int len);
    int r = xpu::swish(xpu_context, x_data, y_data, x->numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "swish");
  }
};

template <typename T>
struct XPUSwishGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    const T *x_data = x->data<T>();
    const T *y_grad = dOut->data<T>();
    T *x_grad = dX->mutable_data<T>(ctx.GetPlace());

    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
    // int swish_grad(Context* ctx, const T* x, const T* dy, T* dx, int len);
    int r = xpu::swish_grad(xpu_context, x_data, y_grad, x_grad, dX->numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "swish_grad");
  }
};

478 479 480 481 482 483 484 485 486 487 488 489
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_XPU_KERNEL(act_type, functor, grad_functor)  \
  REGISTER_OP_XPU_KERNEL(act_type,                                       \
                         ops::XPUActivationKernel<ops::functor<float>>); \
  REGISTER_OP_XPU_KERNEL(                                                \
      act_type##_grad,                                                   \
      ops::XPUActivationGradKernel<ops::grad_functor<float>>);

490 491 492 493 494 495 496
REGISTER_ACTIVATION_XPU_KERNEL(abs, XPUAbsFunctor, XPUAbsGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(hard_swish, XPUHardSwishFunctor,
                               XPUHardSwishGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(leaky_relu, XPULeakyReluFunctor,
                               XPULeakyReluGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(reciprocal, XPUReciprocalFunctor,
                               XPUReciprocalGradFunctor)
497 498 499
REGISTER_ACTIVATION_XPU_KERNEL(sigmoid, XPUSigmoidFunctor,
                               XPUSigmoidGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(sqrt, XPUSqrtFunctor, XPUSqrtGradFunctor)
T
TTerror 已提交
500
REGISTER_ACTIVATION_XPU_KERNEL(square, XPUSquareFunctor, XPUSquareGradFunctor)
501 502
REGISTER_ACTIVATION_XPU_KERNEL(softplus, XPUSoftPlusFunctor,
                               XPUSoftPlusGradFunctor)
503 504
REGISTER_ACTIVATION_XPU_KERNEL(swish, XPUSwishFunctor, XPUSwishGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(pow, XPUPowFunctor, XPUPowGradFunctor)
505

506 507 508 509 510 511 512
REGISTER_OP_XPU_KERNEL(
    relu, ops::XPUActivationKernel<ops::XPUReluFunctor<float>>,
    ops::XPUActivationKernel<ops::XPUReluFunctor<paddle::platform::float16>>);
REGISTER_OP_XPU_KERNEL(
    relu_grad, ops::XPUActivationGradKernel<ops::XPUReluGradFunctor<float>>,
    ops::XPUActivationGradKernel<
        ops::XPUReluGradFunctor<paddle::platform::float16>>);
513 514 515 516 517 518 519 520
REGISTER_OP_XPU_KERNEL(
    tanh, ops::XPUActivationKernel<ops::XPUTanhFunctor<float>>,
    ops::XPUActivationKernel<ops::XPUTanhFunctor<paddle::platform::float16>>);
REGISTER_OP_XPU_KERNEL(
    tanh_grad, ops::XPUActivationGradKernel<ops::XPUTanhGradFunctor<float>>,
    ops::XPUActivationGradKernel<
        ops::XPUTanhGradFunctor<paddle::platform::float16>>);

521 522
REGISTER_OP_XPU_KERNEL(exp,
                       ops::XPUActivationKernel<ops::XPUExpFunctor<float>>);
523 524 525 526
REGISTER_OP_XPU_KERNEL(log,
                       ops::XPUActivationKernel<ops::XPULogFunctor<float>>);

#endif  // PADDLE_WITH_XPU