activation_op_mlu.cc 9.2 KB
Newer Older
F
fwenguang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

26
template <cnnlActivationMode_t act_mode, typename T>
F
fwenguang 已提交
27 28 29 30 31
class ActivationMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
32
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
F
fwenguang 已提交
33 34 35

    output->mutable_data<T>(ctx.GetPlace());

36
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
37 38 39 40 41
    MLUCnnlTensorDesc input_desc(*input);
    MLUCnnlTensorDesc output_desc(*output);

    MLUCnnl::Active(ctx, act_desc.get(), input_desc.get(), GetBasePtr(input),
                    output_desc.get(), GetBasePtr(output));
F
fwenguang 已提交
42 43 44
  }
};

45
// For gelu, leaky_relu
46
template <cnnlActivationMode_t act_mode, typename T>
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
class ActivationGradMLUKernelV1 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

    dx->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
    MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, nullptr, nullptr,
                        dout_desc.get(), GetBasePtr(dout), x_desc.get(),
                        GetBasePtr(x), dx_desc.get(), GetBasePtr(dx));
  }
};

// For tanh, sigmoid
template <cnnlActivationMode_t act_mode, typename T>
class ActivationGradMLUKernelV2 : public framework::OpKernel<T> {
F
fwenguang 已提交
70 71 72 73 74
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
75
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
F
fwenguang 已提交
76 77 78

    dx->mutable_data<T>(ctx.GetPlace());

79 80 81
    MLUCnnlTensorDesc out_desc(*out);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
82
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, out_desc.get(),
                        GetBasePtr(out), dout_desc.get(), GetBasePtr(dout),
                        nullptr, nullptr, dx_desc.get(), GetBasePtr(dx));
  }
};

// For relu, relu6
template <cnnlActivationMode_t act_mode, typename T>
class ActivationGradMLUKernelV3 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

    dx->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc out_desc(*out);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
    MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, nullptr, nullptr,
                        dout_desc.get(), GetBasePtr(dout), out_desc.get(),
                        GetBasePtr(out), dx_desc.get(), GetBasePtr(dx));
F
fwenguang 已提交
108 109 110
  }
};

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
// For sqrt
template <typename T>
class SqrtMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    MLUCnnlTensorDesc input_desc(*x);
    MLUCnnlTensorDesc output_desc(*out);

    cnnlComputationPreference_t prefer = CNNL_COMPUTATION_FAST;
    MLUCnnl::Sqrt(ctx, prefer, input_desc.get(), GetBasePtr(x),
                  output_desc.get(), GetBasePtr(out));
  }
};

template <typename T>
class SqrtGradMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    MLUCnnlTensorDesc data_desc(*out);
    MLUCnnl::SqrtGrad(ctx, data_desc.get(), GetBasePtr(out), GetBasePtr(dout),
                      GetBasePtr(dx));
  }
};

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
// CNNL_LOG_E = 0,
// CNNL_LOG_2 = 1,
// CNNL_LOG_10 = 2,
template <cnnlLogBase_t Log_base, typename T>
class LogMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    output->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc input_desc(*input);
    MLUCnnlTensorDesc output_desc(*output);
    cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION;

    MLUCnnl::Log(ctx, prefer, Log_base, input_desc.get(), GetBasePtr(input),
                 output_desc.get(), GetBasePtr(output));
  }
};

F
fwenguang 已提交
168 169 170 171 172
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

173
// relu
F
fwenguang 已提交
174
REGISTER_OP_MLU_KERNEL(
175 176
    relu, ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU, float>,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU, paddle::platform::float16>);
F
fwenguang 已提交
177
REGISTER_OP_MLU_KERNEL(
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    relu_grad, ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU, float>,
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU,
                                   paddle::platform::float16>);

// relu6
REGISTER_OP_MLU_KERNEL(
    relu6, ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU6, float>,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU6, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    relu6_grad, ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU6, float>,
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU6,
                                   paddle::platform::float16>);

// sigmoid
REGISTER_OP_MLU_KERNEL(sigmoid,
                       ops::ActivationMLUKernel<CNNL_ACTIVATION_SIGMOID, float>,
                       ops::ActivationMLUKernel<CNNL_ACTIVATION_SIGMOID,
                                                paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    sigmoid_grad,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_SIGMOID, float>,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_SIGMOID,
                                   paddle::platform::float16>);

// tanh
REGISTER_OP_MLU_KERNEL(
    tanh, ops::ActivationMLUKernel<CNNL_ACTIVATION_TANH, float>,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_TANH, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    tanh_grad, ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_TANH, float>,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_TANH,
                                   paddle::platform::float16>);

// gelu
REGISTER_OP_MLU_KERNEL(
    gelu, ops::ActivationMLUKernel<CNNL_ACTIVATION_GELU, float>,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_GELU, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    gelu_grad, ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_GELU, float>,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_GELU,
                                   paddle::platform::float16>);

// leaky_relu
REGISTER_OP_MLU_KERNEL(
    leaky_relu, ops::ActivationMLUKernel<CNNL_ACTIVATION_LEAKYRELU, float>,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_LEAKYRELU,
                             paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    leaky_relu_grad,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_LEAKYRELU, float>,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_LEAKYRELU,
                                   paddle::platform::float16>);
230 231 232 233 234 235

// sqrt
REGISTER_OP_MLU_KERNEL(sqrt, ops::SqrtMLUKernel<float>,
                       ops::SqrtMLUKernel<paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(sqrt_grad, ops::SqrtGradMLUKernel<float>,
                       ops::SqrtGradMLUKernel<paddle::platform::float16>);
236 237 238 239 240 241 242 243 244 245 246 247 248

// log log2 log10
REGISTER_OP_MLU_KERNEL(
    log, ops::LogMLUKernel<CNNL_LOG_E, float>,
    ops::LogMLUKernel<CNNL_LOG_E, paddle::platform::float16>);

REGISTER_OP_MLU_KERNEL(
    log2, ops::LogMLUKernel<CNNL_LOG_2, float>,
    ops::LogMLUKernel<CNNL_LOG_2, paddle::platform::float16>);

REGISTER_OP_MLU_KERNEL(
    log10, ops::LogMLUKernel<CNNL_LOG_10, float>,
    ops::LogMLUKernel<CNNL_LOG_10, paddle::platform::float16>);