Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
10114859
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
10114859
编写于
4月 15, 2022
作者:
F
fwenguang
提交者:
GitHub
4月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add mlu activation kernels (#41751)
上级
fc208b7e
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
831 addition
and
55 deletion
+831
-55
paddle/fluid/operators/activation_op_mlu.cc
paddle/fluid/operators/activation_op_mlu.cc
+110
-28
paddle/fluid/operators/fill_constant_op_mlu.cc
paddle/fluid/operators/fill_constant_op_mlu.cc
+7
-9
paddle/fluid/operators/mean_op_mlu.cc
paddle/fluid/operators/mean_op_mlu.cc
+2
-1
paddle/fluid/operators/metrics/accuracy_op_mlu.cc
paddle/fluid/operators/metrics/accuracy_op_mlu.cc
+5
-3
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+19
-4
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+5
-1
paddle/fluid/operators/optimizers/merged_momentum_op_mlu.cc
paddle/fluid/operators/optimizers/merged_momentum_op_mlu.cc
+3
-2
paddle/fluid/operators/optimizers/momentum_op_mlu.cc
paddle/fluid/operators/optimizers/momentum_op_mlu.cc
+2
-1
paddle/fluid/operators/reduce_ops/reduce_mean_op_mlu.cc
paddle/fluid/operators/reduce_ops/reduce_mean_op_mlu.cc
+2
-2
paddle/fluid/operators/scale_op_mlu.cc
paddle/fluid/operators/scale_op_mlu.cc
+6
-4
python/paddle/fluid/tests/unittests/mlu/test_gelu_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_gelu_op_mlu.py
+151
-0
python/paddle/fluid/tests/unittests/mlu/test_leaky_relu_op_mlu.py
...addle/fluid/tests/unittests/mlu/test_leaky_relu_op_mlu.py
+143
-0
python/paddle/fluid/tests/unittests/mlu/test_relu6_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_relu6_op_mlu.py
+164
-0
python/paddle/fluid/tests/unittests/mlu/test_sigmoid_op_mlu.py
...n/paddle/fluid/tests/unittests/mlu/test_sigmoid_op_mlu.py
+65
-0
python/paddle/fluid/tests/unittests/mlu/test_tanh_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_tanh_op_mlu.py
+147
-0
未找到文件。
paddle/fluid/operators/activation_op_mlu.cc
浏览文件 @
10114859
...
...
@@ -15,12 +15,8 @@ limitations under the Licnse. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/platform/device/mlu/device_context.h"
#include "paddle/phi/core/ddim.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -38,20 +34,39 @@ class ActivationMLUKernel : public framework::OpKernel<T> {
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlActivationDesc
act_desc
(
act_mode
,
alpha
);
MLUCnnlTensorDesc
input_desc
(
*
input
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
input
->
dtype
()));
MLUCnnlTensorDesc
output_desc
(
*
output
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
output
->
dtype
()));
MLUCnnl
::
Active
(
ctx
,
act_desc
.
get
(),
input_desc
.
get
(),
reinterpret_cast
<
const
void
*>
(
input
->
data
<
T
>
()),
output_desc
.
get
(),
reinterpret_cast
<
void
*>
(
output
->
data
<
T
>
()));
MLUCnnlTensorDesc
input_desc
(
*
input
);
MLUCnnlTensorDesc
output_desc
(
*
output
);
MLUCnnl
::
Active
(
ctx
,
act_desc
.
get
(),
input_desc
.
get
(),
GetBasePtr
(
input
),
output_desc
.
get
(),
GetBasePtr
(
output
));
}
};
// For gelu, leaky_relu
template
<
cnnlActivationMode_t
act_mode
,
typename
T
>
class
ActivationGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ActivationGradMLUKernelV1
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
float
alpha
=
ctx
.
HasAttr
(
"alpha"
)
?
ctx
.
Attr
<
float
>
(
"alpha"
)
:
1.0
f
;
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
x_desc
(
*
x
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
MLUCnnlTensorDesc
dx_desc
(
*
dx
);
MLUCnnlActivationDesc
act_desc
(
act_mode
,
alpha
);
MLUCnnl
::
ActiveGrad
(
ctx
,
act_desc
.
get
(),
nullptr
,
nullptr
,
nullptr
,
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
x_desc
.
get
(),
GetBasePtr
(
x
),
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
};
// For tanh, sigmoid
template
<
cnnlActivationMode_t
act_mode
,
typename
T
>
class
ActivationGradMLUKernelV2
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
out
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
...
...
@@ -61,18 +76,35 @@ class ActivationGradMLUKernel : public framework::OpKernel<T> {
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
dout_desc
(
*
dout
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
dout
->
dtype
()));
MLUCnnlTensorDesc
out_desc
(
*
out
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
out
->
dtype
()));
MLUCnnlTensorDesc
dx_desc
(
*
dx
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
dx
->
dtype
()));
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
MLUCnnlTensorDesc
dx_desc
(
*
dx
);
MLUCnnlActivationDesc
act_desc
(
act_mode
,
alpha
);
MLUCnnl
::
ActiveGrad
(
ctx
,
act_desc
.
get
(),
nullptr
,
nullptr
,
nullptr
,
nullptr
,
dout_desc
.
get
(),
reinterpret_cast
<
const
void
*>
(
dout
->
data
<
T
>
()),
out_desc
.
get
(),
reinterpret_cast
<
const
void
*>
(
out
->
data
<
T
>
()),
dx_desc
.
get
(),
reinterpret_cast
<
void
*>
(
dx
->
data
<
T
>
()));
MLUCnnl
::
ActiveGrad
(
ctx
,
act_desc
.
get
(),
nullptr
,
nullptr
,
out_desc
.
get
(),
GetBasePtr
(
out
),
dout_desc
.
get
(),
GetBasePtr
(
dout
),
nullptr
,
nullptr
,
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
};
// For relu, relu6
template
<
cnnlActivationMode_t
act_mode
,
typename
T
>
class
ActivationGradMLUKernelV3
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
out
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
float
alpha
=
ctx
.
HasAttr
(
"alpha"
)
?
ctx
.
Attr
<
float
>
(
"alpha"
)
:
1.0
f
;
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
MLUCnnlTensorDesc
dx_desc
(
*
dx
);
MLUCnnlActivationDesc
act_desc
(
act_mode
,
alpha
);
MLUCnnl
::
ActiveGrad
(
ctx
,
act_desc
.
get
(),
nullptr
,
nullptr
,
nullptr
,
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
out_desc
.
get
(),
GetBasePtr
(
out
),
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
};
...
...
@@ -81,10 +113,60 @@ class ActivationGradMLUKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
// relu
REGISTER_OP_MLU_KERNEL
(
relu
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_RELU
,
float
>
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_RELU
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
relu_grad
,
ops
::
ActivationGradMLUKernel
<
CNNL_ACTIVATION_RELU
,
float
>
,
ops
::
ActivationGradMLUKernel
<
CNNL_ACTIVATION_RELU
,
paddle
::
platform
::
float16
>
);
relu_grad
,
ops
::
ActivationGradMLUKernelV3
<
CNNL_ACTIVATION_RELU
,
float
>
,
ops
::
ActivationGradMLUKernelV3
<
CNNL_ACTIVATION_RELU
,
paddle
::
platform
::
float16
>
);
// relu6
REGISTER_OP_MLU_KERNEL
(
relu6
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_RELU6
,
float
>
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_RELU6
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
relu6_grad
,
ops
::
ActivationGradMLUKernelV3
<
CNNL_ACTIVATION_RELU6
,
float
>
,
ops
::
ActivationGradMLUKernelV3
<
CNNL_ACTIVATION_RELU6
,
paddle
::
platform
::
float16
>
);
// sigmoid
REGISTER_OP_MLU_KERNEL
(
sigmoid
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_SIGMOID
,
float
>
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_SIGMOID
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
sigmoid_grad
,
ops
::
ActivationGradMLUKernelV2
<
CNNL_ACTIVATION_SIGMOID
,
float
>
,
ops
::
ActivationGradMLUKernelV2
<
CNNL_ACTIVATION_SIGMOID
,
paddle
::
platform
::
float16
>
);
// tanh
REGISTER_OP_MLU_KERNEL
(
tanh
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_TANH
,
float
>
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_TANH
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
tanh_grad
,
ops
::
ActivationGradMLUKernelV2
<
CNNL_ACTIVATION_TANH
,
float
>
,
ops
::
ActivationGradMLUKernelV2
<
CNNL_ACTIVATION_TANH
,
paddle
::
platform
::
float16
>
);
// gelu
REGISTER_OP_MLU_KERNEL
(
gelu
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_GELU
,
float
>
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_GELU
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
gelu_grad
,
ops
::
ActivationGradMLUKernelV1
<
CNNL_ACTIVATION_GELU
,
float
>
,
ops
::
ActivationGradMLUKernelV1
<
CNNL_ACTIVATION_GELU
,
paddle
::
platform
::
float16
>
);
// leaky_relu
REGISTER_OP_MLU_KERNEL
(
leaky_relu
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_LEAKYRELU
,
float
>
,
ops
::
ActivationMLUKernel
<
CNNL_ACTIVATION_LEAKYRELU
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
leaky_relu_grad
,
ops
::
ActivationGradMLUKernelV1
<
CNNL_ACTIVATION_LEAKYRELU
,
float
>
,
ops
::
ActivationGradMLUKernelV1
<
CNNL_ACTIVATION_LEAKYRELU
,
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/fill_constant_op_mlu.cc
浏览文件 @
10114859
...
...
@@ -51,6 +51,8 @@ class FillConstantMLUKernel : public framework::OpKernel<T> {
}
}
}
const
T
*
value_data
=
&
value
;
cnnlPointerMode_t
pointer_mode
=
CNNL_POINTER_MODE_HOST
;
if
(
ctx
.
HasInput
(
"ValueTensor"
))
{
auto
*
value_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ValueTensor"
);
PADDLE_ENFORCE_EQ
(
...
...
@@ -59,22 +61,18 @@ class FillConstantMLUKernel : public framework::OpKernel<T> {
"When use Tensor as value to set Tensor value in fill_cosntant, "
"value input(ValueTensor) size must be 1, but get %d"
,
value_tensor
->
numel
()));
const
T
*
tensor_data
=
value_tensor
->
data
<
T
>
();
framework
::
Tensor
mlu_tensor
;
value_data
=
value_tensor
->
data
<
T
>
();
auto
tmp_place
=
value_tensor
->
place
();
if
(
platform
::
is_mlu_place
(
tmp_place
))
{
framework
::
TensorCopySync
(
*
value_tensor
,
platform
::
CPUPlace
(),
&
mlu_tensor
);
tensor_data
=
mlu_tensor
.
data
<
T
>
();
pointer_mode
=
CNNL_POINTER_MODE_DEVICE
;
}
value
=
tensor_data
[
0
];
}
auto
shape
=
GetShape
(
ctx
);
out_var
->
mutable_data
<
T
>
(
shape
,
ctx
.
GetPlace
());
MLUCnnlTensorDesc
output_desc
(
*
out_var
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
out_var
->
dtype
()));
MLUCnnl
::
Fill
(
ctx
,
value
,
output_desc
.
get
(),
GetBasePtr
(
out_var
));
MLUCnnlTensorDesc
output_desc
(
*
out_var
);
MLUCnnl
::
Fill
(
ctx
,
pointer_mode
,
value_data
,
output_desc
.
get
(),
GetBasePtr
(
out_var
));
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mean_op_mlu.cc
浏览文件 @
10114859
...
...
@@ -95,7 +95,8 @@ class MeanMLUGradKernel : public framework::OpKernel<T> {
MLUCnnlTensorDesc
mean_var_desc
(
mean_var
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
mean_var
.
dtype
()));
auto
value
=
static_cast
<
T
>
(
1.0
/
static_cast
<
float
>
(
input_grad
->
numel
()));
MLUCnnl
::
Fill
(
context
,
value
,
mean_var_desc
.
get
(),
GetBasePtr
(
&
mean_var
));
MLUCnnl
::
Fill
(
context
,
CNNL_POINTER_MODE_HOST
,
&
value
,
mean_var_desc
.
get
(),
GetBasePtr
(
&
mean_var
));
// means mul output_grad
MLUCnnlTensorDesc
in_desc
(
*
output_grad
,
CNNL_LAYOUT_ARRAY
,
...
...
paddle/fluid/operators/metrics/accuracy_op_mlu.cc
浏览文件 @
10114859
...
...
@@ -136,15 +136,17 @@ class AccuracyMLUKernel : public framework::OpKernel<T> {
// [total]
total
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
total_desc
(
*
total
);
MLUCnnl
::
Fill
(
ctx
,
num_samples
,
total_desc
.
get
(),
GetBasePtr
(
total
));
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
num_samples
,
total_desc
.
get
(),
GetBasePtr
(
total
));
// use `total` of type `float32` for calculating accuracy
Tensor
total_fp32
(
framework
::
TransToPhiDataType
(
VT
::
FP32
));
total_fp32
.
Resize
(
total
->
dims
());
total_fp32
.
mutable_data
<
float
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
total_fp32_desc
(
total_fp32
);
MLUCnnl
::
Fill
(
ctx
,
static_cast
<
float
>
(
num_samples
),
total_fp32_desc
.
get
(),
GetBasePtr
(
&
total_fp32
));
float
num_samples_fp32
=
static_cast
<
float
>
(
num_samples
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
num_samples_fp32
,
total_fp32_desc
.
get
(),
GetBasePtr
(
&
total_fp32
));
// [accuracy]
accuracy
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
...
...
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
10114859
...
...
@@ -208,8 +208,20 @@ MLUCnnlTensorDesc::~MLUCnnlTensorDesc() {
MLUCnnlActivationDesc
::
MLUCnnlActivationDesc
(
const
cnnlActivationMode_t
act_mode
,
const
float
ceof
)
{
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlCreateActivationDescriptor
(
&
active_desc_
));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSetActivationDescriptor
(
active_desc_
,
act_mode
,
CNNL_NOT_PROPAGATE_NAN
,
ceof
));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSetActivationDescriptor_v4
(
active_desc_
,
act_mode
,
CNNL_ACTIVATION_HIGH_PRECISION
,
CNNL_NOT_PROPAGATE_NAN
,
ceof
,
1.0
f
/*sliced_dim*/
,
1.67326319217681884765625
/*selu_alpha*/
,
1.05070102214813232421875
/*selu_lambda*/
));
}
MLUCnnlActivationDesc
::
MLUCnnlActivationDesc
(
const
cnnlActivationMode_t
act_mode
,
const
float
ceof
,
const
float
sliced_dim
,
const
float
selu_alpha
,
const
float
selu_lambda
)
{
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlCreateActivationDescriptor
(
&
active_desc_
));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSetActivationDescriptor_v4
(
active_desc_
,
act_mode
,
CNNL_ACTIVATION_HIGH_PRECISION
,
CNNL_NOT_PROPAGATE_NAN
,
ceof
,
sliced_dim
,
selu_alpha
,
selu_lambda
));
}
const
cnnlActivationDescriptor_t
MLUCnnlActivationDesc
::
get
()
const
{
...
...
@@ -541,12 +553,15 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
output_desc
,
output
));
}
/* static */
void
MLUCnnl
::
Fill
(
const
ExecutionContext
&
ctx
,
float
value
,
/* static */
void
MLUCnnl
::
Fill
(
const
ExecutionContext
&
ctx
,
const
cnnlPointerMode_t
pointer_mode
,
const
void
*
value_ptr
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlFill
(
handle
,
value
,
output_desc
,
output
));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlFill_v3
(
handle
,
pointer_mode
,
value_ptr
,
output_desc
,
output
));
}
/* static */
void
MLUCnnl
::
QuantifyOffline
(
...
...
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
10114859
...
...
@@ -218,6 +218,9 @@ class MLUCnnlActivationDesc {
MLUCnnlActivationDesc
(
const
MLUCnnlActivationDesc
&
desc
)
=
delete
;
MLUCnnlActivationDesc
&
operator
=
(
const
MLUCnnlActivationDesc
&
desc
)
=
delete
;
MLUCnnlActivationDesc
(
const
cnnlActivationMode_t
act_mode
,
const
float
ceof
);
MLUCnnlActivationDesc
(
const
cnnlActivationMode_t
act_mode
,
const
float
ceof
,
const
float
sliced_dim
,
const
float
selu_alpha
,
const
float
selu_lambda
);
const
cnnlActivationDescriptor_t
get
()
const
;
~
MLUCnnlActivationDesc
();
...
...
@@ -418,7 +421,8 @@ class MLUCnnl {
const
cnnlTensorDescriptor_t
in1_desc
,
const
void
*
in1
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
Fill
(
const
ExecutionContext
&
ctx
,
float
value
,
static
void
Fill
(
const
ExecutionContext
&
ctx
,
const
cnnlPointerMode_t
pointer_mode
,
const
void
*
value_ptr
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
LRN
(
const
ExecutionContext
&
ctx
,
const
int
local_size
,
...
...
paddle/fluid/operators/optimizers/merged_momentum_op_mlu.cc
浏览文件 @
10114859
...
...
@@ -69,7 +69,7 @@ class MLUMergedMomentumOpKernel : public framework::OpKernel<T> {
"the same Tensors."
));
}
auto
mu
=
ctx
.
Attr
<
float
>
(
"mu"
);
auto
mu
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"mu"
)
);
auto
lrs
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"LearningRate"
);
if
(
lrs
.
size
()
!=
1
)
{
PADDLE_ENFORCE_EQ
(
...
...
@@ -114,7 +114,8 @@ class MLUMergedMomentumOpKernel : public framework::OpKernel<T> {
Tensor
mu_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
MLUCnnlTensorDesc
mu_tensor_desc
(
mu_tensor
);
MLUCnnl
::
Fill
(
ctx
,
mu
,
mu_tensor_desc
.
get
(),
GetBasePtr
(
&
mu_tensor
));
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
mu
,
mu_tensor_desc
.
get
(),
GetBasePtr
(
&
mu_tensor
));
for
(
size_t
idx
=
0
;
idx
<
n
;
++
idx
)
{
RegularizationType
regularization_flag
=
...
...
paddle/fluid/operators/optimizers/momentum_op_mlu.cc
浏览文件 @
10114859
...
...
@@ -52,7 +52,8 @@ class MLUMomentumOpKernel : public framework::OpKernel<T> {
Tensor
mu_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
MLUCnnlTensorDesc
mu_tensor_desc
(
mu_tensor
);
MLUCnnl
::
Fill
(
ctx
,
mu
,
mu_tensor_desc
.
get
(),
GetBasePtr
(
&
mu_tensor
));
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
mu
,
mu_tensor_desc
.
get
(),
GetBasePtr
(
&
mu_tensor
));
Tensor
regularized_grad
;
MLUCnnlTensorDesc
param_desc
(
*
param
);
...
...
paddle/fluid/operators/reduce_ops/reduce_mean_op_mlu.cc
浏览文件 @
10114859
...
...
@@ -103,8 +103,8 @@ class ReduceMeanGradMLUKernel : public framework::OpKernel<T> {
ToCnnlDataType
(
input_grad
->
dtype
()));
auto
value
=
static_cast
<
T
>
(
1.0
/
static_cast
<
float
>
(
reduce_numel
));
MLUCnnl
::
Fill
(
context
,
value
,
input_grad_desc
.
get
()
,
GetBasePtr
(
input_grad
));
MLUCnnl
::
Fill
(
context
,
CNNL_POINTER_MODE_HOST
,
&
value
,
input_grad_desc
.
get
(),
GetBasePtr
(
input_grad
));
MLUCnnlOpTensorDesc
op_tensor_desc
(
CNNL_OP_TENSOR_MUL
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
...
...
paddle/fluid/operators/scale_op_mlu.cc
浏览文件 @
10114859
...
...
@@ -27,7 +27,7 @@ class ScaleMLUKernel : public framework::OpKernel<T> {
auto
*
in
=
framework
::
GetLoDTensorOrSelectedRowsValueFromVar
(
*
in_var
);
// cnnl require input, scale, bias with same type. And all in device side.
auto
&
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
auto
scale
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"scale"
)
);
framework
::
Tensor
scale_tensor
;
if
(
ctx
.
HasInput
(
"ScaleTensor"
))
{
framework
::
Tensor
float_scale_tensor
=
...
...
@@ -49,14 +49,16 @@ class ScaleMLUKernel : public framework::OpKernel<T> {
}
else
{
scale_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
MLUCnnlTensorDesc
scale_desc
(
scale_tensor
);
MLUCnnl
::
Fill
(
ctx
,
scale
,
scale_desc
.
get
(),
GetBasePtr
(
&
scale_tensor
));
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
scale
,
scale_desc
.
get
(),
GetBasePtr
(
&
scale_tensor
));
}
auto
&
bias
=
ctx
.
Attr
<
float
>
(
"bias"
);
auto
bias
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"bias"
)
);
framework
::
Tensor
bias_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
MLUCnnlTensorDesc
bias_desc
(
bias_tensor
);
MLUCnnl
::
Fill
(
ctx
,
bias
,
bias_desc
.
get
(),
GetBasePtr
(
&
bias_tensor
));
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
bias
,
bias_desc
.
get
(),
GetBasePtr
(
&
bias_tensor
));
auto
*
out_var
=
ctx
.
OutputVar
(
"Out"
);
if
(
in_var
->
IsType
<
phi
::
SelectedRows
>
()
&&
in_var
!=
out_var
)
{
...
...
python/paddle/fluid/tests/unittests/mlu/test_gelu_op_mlu.py
0 → 100644
浏览文件 @
10114859
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
from
scipy
import
special
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2021
def
np_gelu
(
x
):
y
=
0.5
*
x
*
(
1
+
special
.
erf
(
x
/
np
.
sqrt
(
2
)))
return
y
class
TestGelu
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"gelu"
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
np_gelu
(
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-3
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.007
)
class
TestGeluFp16
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"gelu"
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
1
,
2
,
[
3
,
4
]).
astype
(
self
.
dtype
)
out
=
np_gelu
(
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-3
)
class
TestGeluNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_mlu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
c
=
paddle
.
multiply
(
a
,
b
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
c
,
size
=
128
)
fc_1_gelu
=
fluid
.
layers
.
gelu
(
fc_1
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1_gelu
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_mlu
:
place
=
paddle
.
MLUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_mlu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
mlu_pred
,
mlu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
mlu_pred
,
cpu_pred
,
atol
=
1e-3
))
self
.
assertTrue
(
np
.
allclose
(
mlu_loss
,
cpu_loss
,
atol
=
1e-3
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_leaky_relu_op_mlu.py
0 → 100644
浏览文件 @
10114859
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
from
test_activation_op
import
ref_leaky_relu
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2021
class
TestLeadyRelu
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"leaky_relu"
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
self
.
set_inputs
()
self
.
set_attrs
()
self
.
set_outputs
()
def
set_inputs
(
self
):
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
def
set_attrs
(
self
):
self
.
attrs
=
{}
def
set_outputs
(
self
):
alpha
=
0.02
if
'alpha'
not
in
self
.
attrs
else
self
.
attrs
[
'alpha'
]
out
=
ref_leaky_relu
(
self
.
inputs
[
'X'
],
alpha
)
self
.
outputs
=
{
'Out'
:
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.006
)
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
class
TestLeadyReluFP16
(
TestLeadyRelu
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestLeadyRelu2
(
TestLeadyRelu
):
def
set_attrs
(
self
):
self
.
attrs
=
{
'alpha'
:
0.5
}
class
TestLeadyRelu3
(
TestLeadyRelu
):
def
set_attrs
(
self
):
self
.
attrs
=
{
'alpha'
:
-
0.5
}
class
TestLeakyReluNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_mlu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
x_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
y
=
paddle
.
nn
.
functional
.
leaky_relu
(
x
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
y
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_mlu
:
place
=
paddle
.
MLUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"x"
:
x_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_mlu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
mlu_pred
,
mlu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
mlu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
mlu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_relu6_op_mlu.py
0 → 100644
浏览文件 @
10114859
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle.fluid
as
fluid
import
paddle
from
op_test
import
OpTest
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
paddle
.
enable_static
()
SEED
=
2021
def
ref_relu6
(
x
,
threshold
=
6.0
):
out
=
np
.
copy
(
x
)
out
[
np
.
abs
(
x
-
threshold
)
<
0.005
]
=
threshold
+
0.02
out
=
np
.
minimum
(
np
.
maximum
(
x
,
0
),
threshold
)
return
out
class
TestRelu6
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"relu6"
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
-
1
,
10
,
[
10
,
12
]).
astype
(
self
.
dtype
)
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
out
=
ref_relu6
(
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
attrs
=
{
'threshold'
:
6.0
}
self
.
outputs
=
{
'Out'
:
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
class
TestRelu6Float16
(
TestRelu6
):
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
def
set_attrs
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestReluNeg
(
TestRelu6
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"relu6"
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
-
10
,
-
1
,
[
10
,
12
]).
astype
(
self
.
dtype
)
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
out
=
ref_relu6
(
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
attrs
=
{
'threshold'
:
6.0
}
self
.
outputs
=
{
'Out'
:
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestRelu6Net
(
unittest
.
TestCase
):
def
_test
(
self
,
run_mlu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
sum
=
paddle
.
add
(
a
,
b
)
z
=
paddle
.
nn
.
functional
.
relu6
(
sum
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
z
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_mlu
:
place
=
paddle
.
MLUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_mlu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
mlu_pred
,
mlu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
mlu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
mlu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_sigmoid_op_mlu.py
0 → 100644
浏览文件 @
10114859
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
from
paddle.fluid.tests.unittests.op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2021
class
TestMLUSigmoid
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"sigmoid"
self
.
set_mlu
()
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
1
/
(
1
+
np
.
exp
(
-
x
))
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.01
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
class
TestMLUSigmoidFp16
(
TestMLUSigmoid
):
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-3
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_tanh_op_mlu.py
0 → 100644
浏览文件 @
10114859
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2021
class
TestTanh
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"tanh"
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
np
.
tanh
(
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.009
)
else
:
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.009
)
class
TestTanhFp16
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"tanh"
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
1
,
2
,
[
3
,
4
]).
astype
(
self
.
dtype
)
out
=
np
.
tanh
(
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-3
)
class
TestTanhNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_mlu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
c
=
paddle
.
multiply
(
a
,
b
)
d
=
paddle
.
tanh
(
c
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
d
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_mlu
:
place
=
paddle
.
MLUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_mlu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
mlu_pred
,
mlu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
mlu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
mlu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录