pool_op_mlu.cc 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

F
From00 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
F
From00 已提交
17
#include "paddle/phi/kernels/funcs/pooling.h"
18 19 20 21 22 23 24

namespace paddle {
namespace operators {

namespace {

cnnlPoolingMode_t ToCnnlPoolingMode(const std::string &pooling_type,
25 26
                                    bool exclusive,
                                    bool adaptive) {
27 28 29 30
  cnnlPoolingMode_t pooling_mode;
  if (pooling_type == "max") {
    pooling_mode = CNNL_POOLING_MAX;
  } else if (pooling_type == "avg") {
31
    if (exclusive && !adaptive) {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
      pooling_mode = CNNL_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
    } else {
      pooling_mode = CNNL_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument("Unknown pooling_type: %s",
                                                   pooling_type));
  }
  return pooling_mode;
}
}  // namespace

template <typename T>
class MLUPoolOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
    const Tensor *in_x = ctx.Input<Tensor>("X");
    Tensor *out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string data_format = ctx.Attr<std::string>("data_format");

    bool global_pooling = ctx.Attr<bool>("global_pooling");
    bool ceil_mode = ctx.Attr<bool>("ceil_mode");
    bool exclusive = ctx.Attr<bool>("exclusive");
    bool adaptive = ctx.Attr<bool>("adaptive");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

65 66
    PADDLE_ENFORCE_EQ(in_x->dims().size(),
                      4,
67 68 69
                      platform::errors::InvalidArgument(
                          "Only support 4-dims for mlu pool2d kernel."));

70
    const bool channel_last = data_format == "NHWC";
71 72 73 74 75 76
    // default
    cnnlTensorLayout_t cnnl_layout = CNNL_LAYOUT_NCHW;
    auto out_dims = out->dims();
    int64_t out_h = out_dims[2];
    int64_t out_w = out_dims[3];
    auto in_x_dims = in_x->dims();
77
    framework::DDim data_dims = phi::slice_ddim(in_x_dims, 2, in_x_dims.size());
78 79 80 81 82

    if (channel_last) {
      cnnl_layout = CNNL_LAYOUT_NHWC;
      out_h = out_dims[1];
      out_w = out_dims[2];
83
      data_dims = phi::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
84 85
    }

86 87 88 89 90 91 92
    phi::funcs::UpdatePadding(&paddings,
                              global_pooling,
                              adaptive,
                              padding_algorithm,
                              data_dims,
                              strides,
                              ksize);
93
    if (global_pooling) {
F
From00 已提交
94
      phi::funcs::UpdateKernelSize(&ksize, data_dims);
95 96 97 98 99
    }

    MLUCnnlTensorDesc in_x_desc(*in_x, cnnl_layout, ToCnnlDataType<T>());
    MLUCnnlTensorDesc out_desc(*out, cnnl_layout, ToCnnlDataType<T>());

100 101 102 103
    cnnlPoolingMode_t pool_mode =
        ToCnnlPoolingMode(pooling_type, exclusive, adaptive);

    if (!adaptive) {
104 105 106 107 108 109 110 111 112 113 114 115 116
      MLUCnnlPoolingDesc pool_desc(pool_mode,
                                   CNNL_NOT_PROPAGATE_NAN,
                                   ksize[0],
                                   ksize[1],
                                   paddings[0],
                                   paddings[1],
                                   paddings[2],
                                   paddings[3],
                                   strides[0],
                                   strides[1],
                                   1 /*row_dilation*/,
                                   1 /*col_dilation*/,
                                   ceil_mode);
117 118 119 120

      size_t extra_input_size = 0;
      cnnlHandle_t handle =
          ctx.template device_context<MLUDeviceContext>().cnnl_handle();
121 122
      cnnlGetPoolingExtraInputSize(
          handle, pool_mode, out_w, out_h, &extra_input_size);
123

124
      if (extra_input_size > 0) {
L
Leo Chen 已提交
125
        phi::CPUContext cpu_ctx;
126
        framework::Tensor extra_host_tensor =
L
Leo Chen 已提交
127
            ctx.AllocateTmpTensor<int8_t, phi::CPUContext>(
128
                {static_cast<int64_t>(extra_input_size)}, cpu_ctx);
129 130 131
        cnnlInitPoolingExtraInput(handle,
                                  pool_desc.get(),
                                  in_x_desc.get(),
132 133 134 135 136
                                  out_desc.get(),
                                  GetBasePtr(&extra_host_tensor));
        framework::Tensor extra_device_tensor =
            ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
                {static_cast<int64_t>(extra_input_size)}, dev_ctx);
137 138
        framework::TensorCopy(
            extra_host_tensor, ctx.GetPlace(), &extra_device_tensor);
139 140 141 142 143 144 145 146
        // Increase extra_host_tensor holder_ reference count until copy
        // complete.
        auto increase_ref_count = [extra_host_tensor]() {
          VLOG(4) << "Finished copying extra_host_tensor["
                  << GetBasePtr(&extra_host_tensor)
                  << "] in mlu pooling kernel.";
        };
        dev_ctx.AddStreamCallback(increase_ref_count);
147
        MLUCnnl::PoolingForward(
148 149 150 151 152 153 154 155 156
            ctx,
            pool_mode,
            out_h,
            out_w,
            pool_desc.get(),
            nullptr /*alpha*/,
            in_x_desc.get(),
            GetBasePtr(in_x),
            nullptr /*beta*/,
157
            GetBasePtr(&extra_device_tensor) /*params_shape_ptr*/,
158 159
            out_desc.get(),
            GetBasePtr(out));
160
      } else {
161 162 163 164 165 166 167 168 169 170 171 172
        MLUCnnl::PoolingForward(ctx,
                                pool_mode,
                                out_h,
                                out_w,
                                pool_desc.get(),
                                nullptr /*alpha*/,
                                in_x_desc.get(),
                                GetBasePtr(in_x),
                                nullptr /*beta*/,
                                nullptr /*params_shape_ptr*/,
                                out_desc.get(),
                                GetBasePtr(out));
173
      }
174
    } else {
175 176 177 178 179 180 181 182
      // cnnl Adaptive pooling only support NHWC layout
      framework::Tensor trans_in_x;
      framework::Tensor trans_out;
      if (channel_last) {
        trans_in_x = *in_x;
        trans_out = *out;
      } else {
        std::vector<int> perm{0, 2, 3, 1};
183 184
        TransposeFromMLUTensor<T>(
            ctx, perm, in_x, &trans_in_x, true /*need_reshape_or_alloc*/);
185 186 187
        trans_out = ctx.AllocateTmpTensor<T, MLUDeviceContext>(
            {out_dims[0], out_dims[2], out_dims[3], out_dims[1]}, dev_ctx);
      }
188 189 190 191 192 193 194 195 196 197 198 199
      MLUCnnlTensorDesc trans_in_x_desc(
          trans_in_x, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
      MLUCnnlTensorDesc trans_out_desc(
          trans_out, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
      MLUCnnl::AdaptivePoolingForward(ctx,
                                      pool_mode,
                                      trans_in_x_desc.get(),
                                      GetBasePtr(&trans_in_x),
                                      trans_out_desc.get(),
                                      GetBasePtr(&trans_out),
                                      nullptr,
                                      nullptr);
200 201
      if (!channel_last) {
        std::vector<int> perm{0, 3, 1, 2};
202 203
        TransposeFromMLUTensor<T>(
            ctx, perm, &trans_out, out, false /*need_reshape_or_alloc*/);
204
      }
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    }
  }
};

template <typename T, typename IDX_T>
class MLUPoolGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
    const Tensor *in_x = ctx.Input<Tensor>("X");
    const Tensor *out = ctx.Input<Tensor>("Out");
    const Tensor *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor *in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    in_x_grad->mutable_data<T>(ctx.GetPlace());

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    bool ceil_mode = ctx.Attr<bool>("ceil_mode");
    bool exclusive = ctx.Attr<bool>("exclusive");
    bool adaptive = ctx.Attr<bool>("adaptive");
    std::string data_format = ctx.Attr<std::string>("data_format");
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    const bool channel_last = data_format == "NHWC";

    auto in_x_dims = in_x->dims();
234
    framework::DDim data_dims = phi::slice_ddim(in_x_dims, 2, in_x_dims.size());
235
    if (channel_last) {
236
      data_dims = phi::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
237 238
    }

239 240 241 242 243 244 245
    phi::funcs::UpdatePadding(&paddings,
                              global_pooling,
                              adaptive,
                              padding_algorithm,
                              data_dims,
                              strides,
                              ksize);
246
    if (global_pooling) {
F
From00 已提交
247
      phi::funcs::UpdateKernelSize(&ksize, data_dims);
248 249 250 251 252 253 254 255 256 257 258 259 260 261
    }

    // inputs need with NHWC layout
    framework::Tensor trans_in_x;
    framework::Tensor trans_out;
    framework::Tensor trans_out_grad;
    framework::Tensor trans_in_x_grad;
    if (channel_last) {
      trans_in_x = *in_x;
      trans_out = *out;
      trans_out_grad = *out_grad;
      trans_in_x_grad = *in_x_grad;
    } else {
      std::vector<int> perm{0, 2, 3, 1};
262 263 264 265 266 267
      TransposeFromMLUTensor<T>(
          ctx, perm, in_x, &trans_in_x, true /*need_reshape_or_alloc*/);
      TransposeFromMLUTensor<T>(
          ctx, perm, out, &trans_out, true /*need_reshape_or_alloc*/);
      TransposeFromMLUTensor<T>(
          ctx, perm, out_grad, &trans_out_grad, true /*need_reshape_or_alloc*/);
268
      auto in_x_grad_dims = in_x_grad->dims();
269 270 271 272 273 274
      trans_in_x_grad =
          ctx.AllocateTmpTensor<T, MLUDeviceContext>({in_x_grad_dims[0],
                                                      in_x_grad_dims[2],
                                                      in_x_grad_dims[3],
                                                      in_x_grad_dims[1]},
                                                     dev_ctx);
275
    }
276 277 278 279 280 281 282 283
    MLUCnnlTensorDesc trans_in_x_desc(
        trans_in_x, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
    MLUCnnlTensorDesc trans_out_desc(
        trans_out, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
    MLUCnnlTensorDesc trans_out_grad_desc(
        trans_out_grad, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
    MLUCnnlTensorDesc trans_in_x_grad_desc(
        trans_in_x_grad, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
284

285 286
    cnnlPoolingMode_t pool_mode =
        ToCnnlPoolingMode(pooling_type, exclusive, adaptive);
287 288 289 290 291 292 293 294 295 296 297 298 299
    MLUCnnlPoolingDesc pool_desc(pool_mode,
                                 CNNL_NOT_PROPAGATE_NAN,
                                 ksize[0],
                                 ksize[1],
                                 paddings[0],
                                 paddings[1],
                                 paddings[2],
                                 paddings[3],
                                 strides[0],
                                 strides[1],
                                 1 /*row_dilation*/,
                                 1 /*col_dilation*/,
                                 ceil_mode);
300 301 302 303 304

    if (pooling_type == "max") {
      framework::Tensor index_tensor =
          ctx.AllocateTmpTensor<IDX_T, MLUDeviceContext>(trans_out_grad.dims(),
                                                         dev_ctx);
305 306 307 308 309 310 311
      MLUCnnlTensorDesc index_tensor_desc(
          index_tensor, CNNL_LAYOUT_NHWC, ToCnnlDataType<IDX_T>());
      MLUCnnl::PoolingIndex(ctx,
                            pool_desc.get(),
                            trans_in_x_desc.get(),
                            GetBasePtr(&trans_in_x),
                            index_tensor_desc.get(),
312
                            GetBasePtr(&index_tensor));
313
      if (adaptive) {
314 315 316 317 318 319 320 321
        MLUCnnl::AdaptivePoolingBackward(ctx,
                                         pool_mode,
                                         trans_out_grad_desc.get(),
                                         GetBasePtr(&trans_out_grad),
                                         index_tensor_desc.get(),
                                         GetBasePtr(&index_tensor),
                                         trans_in_x_grad_desc.get(),
                                         GetBasePtr(&trans_in_x_grad));
322
      } else {
323 324 325 326 327 328 329 330 331 332 333 334
        MLUCnnl::PoolingBackward(ctx,
                                 pool_desc.get(),
                                 nullptr /*alpha*/,
                                 index_tensor_desc.get(),
                                 GetBasePtr(&index_tensor),
                                 trans_out_grad_desc.get(),
                                 GetBasePtr(&trans_out_grad),
                                 trans_in_x_desc.get(),
                                 GetBasePtr(&trans_in_x),
                                 nullptr /*beta*/,
                                 trans_in_x_grad_desc.get(),
                                 GetBasePtr(&trans_in_x_grad));
335
      }
336
    } else {
337
      if (adaptive) {
338 339 340 341 342 343 344 345
        MLUCnnl::AdaptivePoolingBackward(ctx,
                                         pool_mode,
                                         trans_out_grad_desc.get(),
                                         GetBasePtr(&trans_out_grad),
                                         nullptr /*index_tensor_desc.get()*/,
                                         nullptr /*GetBasePtr(&index_tensor)*/,
                                         trans_in_x_grad_desc.get(),
                                         GetBasePtr(&trans_in_x_grad));
346
      } else {
347 348 349 350 351 352 353 354 355 356 357
        MLUCnnl::PoolingBackward(ctx,
                                 pool_desc.get(),
                                 nullptr /*alpha*/,
                                 nullptr,
                                 nullptr,
                                 trans_out_grad_desc.get(),
                                 GetBasePtr(&trans_out_grad),
                                 nullptr,
                                 nullptr,
                                 nullptr /*beta*/,
                                 trans_in_x_grad_desc.get(),
358 359
                                 GetBasePtr(&trans_in_x_grad));
      }
360 361 362
    }
    if (!channel_last) {
      std::vector<int> perm{0, 3, 1, 2};
363 364 365 366
      TransposeFromMLUTensor<T>(ctx,
                                perm,
                                &trans_in_x_grad,
                                in_x_grad,
367 368 369 370 371 372 373 374 375
                                false /*need_reshape_or_alloc*/);
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
376 377
REGISTER_OP_MLU_KERNEL(pool2d,
                       ops::MLUPoolOpKernel<float>,
378
                       ops::MLUPoolOpKernel<plat::float16>);
379 380
REGISTER_OP_MLU_KERNEL(pool2d_grad,
                       ops::MLUPoolGradOpKernel<float, int>,
381
                       ops::MLUPoolGradOpKernel<plat::float16, int16_t>);