Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f138371c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f138371c
编写于
2月 16, 2022
作者:
F
fwenguang
提交者:
GitHub
2月 16, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] support adative pooling (#39500)
上级
a7d4ddc4
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
309 addition
and
77 deletion
+309
-77
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+23
-0
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+12
-0
paddle/fluid/operators/pool_op_mlu.cc
paddle/fluid/operators/pool_op_mlu.cc
+98
-53
python/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py
...on/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py
+176
-24
未找到文件。
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
f138371c
...
...
@@ -1151,6 +1151,18 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
output_desc
,
output
,
workspace_ptr
,
workspace_size
));
}
/* static */
void
MLUCnnl
::
AdaptivePoolingForward
(
const
ExecutionContext
&
ctx
,
cnnlPoolingMode_t
pool_mode
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
,
const
cnnlTensorDescriptor_t
index_desc
,
void
*
index
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlAdaptivePoolingForward
(
handle
,
input_desc
,
input
,
pool_mode
,
output_desc
,
output
,
index_desc
,
index
));
}
/* static */
void
MLUCnnl
::
Pool3D
(
const
ExecutionContext
&
ctx
,
cnnlPoolingMode_t
pool_mode
,
const
std
::
vector
<
int64_t
>&
output_shape
,
...
...
@@ -1802,6 +1814,17 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
y
,
diff_y_desc
,
diff_y
,
x_desc
,
x
,
beta
,
diff_x_desc
,
diff_x
));
}
/* static */
void
MLUCnnl
::
AdaptivePoolingBackward
(
const
ExecutionContext
&
ctx
,
const
cnnlPoolingMode_t
pool_mode
,
const
cnnlTensorDescriptor_t
y_desc
,
const
void
*
y
,
const
cnnlTensorDescriptor_t
index_desc
,
const
void
*
index
,
const
cnnlTensorDescriptor_t
diff_x_desc
,
void
*
diff_x
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlAdaptivePoolingBackward
(
handle
,
y_desc
,
y
,
index_desc
,
index
,
pool_mode
,
diff_x_desc
,
diff_x
));
}
/* static */
void
MLUCnnl
::
NonMaxSuppression
(
const
ExecutionContext
&
ctx
,
const
cnnlNmsDescriptor_t
nms_desc
,
const
cnnlTensorDescriptor_t
boxes_desc
,
const
void
*
boxes
,
...
...
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
f138371c
...
...
@@ -649,6 +649,12 @@ class MLUCnnl {
const
void
*
input
,
const
void
*
beta
,
const
void
*
extra_input_ptr
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
AdaptivePoolingForward
(
const
ExecutionContext
&
ctx
,
cnnlPoolingMode_t
pool_mode
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
,
const
cnnlTensorDescriptor_t
index_desc
,
void
*
index
);
static
void
Pool3D
(
const
ExecutionContext
&
ctx
,
cnnlPoolingMode_t
pool_mode
,
const
std
::
vector
<
int64_t
>&
output_shape
,
cnnlPoolingDescriptor_t
pooling_desc
,
const
void
*
alpha
,
...
...
@@ -958,6 +964,12 @@ class MLUCnnl {
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
void
*
beta
,
const
cnnlTensorDescriptor_t
diff_x_desc
,
void
*
diff_x
);
static
void
AdaptivePoolingBackward
(
const
ExecutionContext
&
ctx
,
const
cnnlPoolingMode_t
pool_mode
,
const
cnnlTensorDescriptor_t
y_desc
,
const
void
*
y
,
const
cnnlTensorDescriptor_t
index_desc
,
const
void
*
index
,
const
cnnlTensorDescriptor_t
diff_x_desc
,
void
*
diff_x
);
static
void
PoolingIndex
(
const
ExecutionContext
&
ctx
,
const
cnnlPoolingDescriptor_t
pooling_desc
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
...
...
paddle/fluid/operators/pool_op_mlu.cc
浏览文件 @
f138371c
...
...
@@ -21,12 +21,12 @@ namespace operators {
namespace
{
cnnlPoolingMode_t
ToCnnlPoolingMode
(
const
std
::
string
&
pooling_type
,
bool
exclusive
)
{
bool
exclusive
,
bool
adaptive
)
{
cnnlPoolingMode_t
pooling_mode
;
if
(
pooling_type
==
"max"
)
{
pooling_mode
=
CNNL_POOLING_MAX
;
}
else
if
(
pooling_type
==
"avg"
)
{
if
(
exclusive
)
{
if
(
exclusive
&&
!
adaptive
)
{
pooling_mode
=
CNNL_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING
;
}
else
{
pooling_mode
=
CNNL_POOLING_AVERAGE_COUNT_INCLUDE_PADDING
;
...
...
@@ -64,10 +64,7 @@ class MLUPoolOpKernel : public framework::OpKernel<T> {
platform
::
errors
::
InvalidArgument
(
"Only support 4-dims for mlu pool2d kernel."
));
PADDLE_ENFORCE_EQ
(
adaptive
,
false
,
platform
::
errors
::
InvalidArgument
(
"Not support adaptive for mlu pool2d kernel."
));
const
bool
channel_last
=
data_format
==
"NHWC"
;
// default
cnnlTensorLayout_t
cnnl_layout
=
CNNL_LAYOUT_NCHW
;
auto
out_dims
=
out
->
dims
();
...
...
@@ -77,7 +74,6 @@ class MLUPoolOpKernel : public framework::OpKernel<T> {
framework
::
DDim
data_dims
=
framework
::
slice_ddim
(
in_x_dims
,
2
,
in_x_dims
.
size
());
const
bool
channel_last
=
data_format
==
"NHWC"
;
if
(
channel_last
)
{
cnnl_layout
=
CNNL_LAYOUT_NHWC
;
out_h
=
out_dims
[
1
];
...
...
@@ -94,42 +90,74 @@ class MLUPoolOpKernel : public framework::OpKernel<T> {
MLUCnnlTensorDesc
in_x_desc
(
*
in_x
,
cnnl_layout
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
out_desc
(
*
out
,
cnnl_layout
,
ToCnnlDataType
<
T
>
());
cnnlPoolingMode_t
pool_mode
=
ToCnnlPoolingMode
(
pooling_type
,
exclusive
);
MLUCnnlPoolingDesc
pool_desc
(
pool_mode
,
CNNL_NOT_PROPAGATE_NAN
,
ksize
[
0
],
ksize
[
1
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
],
paddings
[
3
],
strides
[
0
],
strides
[
1
],
1
/*row_dilation*/
,
1
/*col_dilation*/
,
ceil_mode
);
cnnlPoolingMode_t
pool_mode
=
ToCnnlPoolingMode
(
pooling_type
,
exclusive
,
adaptive
);
if
(
!
adaptive
)
{
MLUCnnlPoolingDesc
pool_desc
(
pool_mode
,
CNNL_NOT_PROPAGATE_NAN
,
ksize
[
0
],
ksize
[
1
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
],
paddings
[
3
],
strides
[
0
],
strides
[
1
],
1
/*row_dilation*/
,
1
/*col_dilation*/
,
ceil_mode
);
size_t
extra_input_size
=
0
;
cnnlHandle_t
handle
=
ctx
.
template
device_context
<
MLUDeviceContext
>().
cnnl_handle
();
cnnlGetPoolingExtraInputSize
(
handle
,
pool_mode
,
out_w
,
out_h
,
&
extra_input_size
);
size_t
extra_input_size
=
0
;
cnnlHandle_t
handle
=
ctx
.
template
device_context
<
MLUDeviceContext
>().
cnnl_handle
();
cnnlGetPoolingExtraInputSize
(
handle
,
pool_mode
,
out_w
,
out_h
,
&
extra_input_size
);
if
(
extra_input_size
>
0
)
{
paddle
::
platform
::
CPUDeviceContext
cpu_ctx
;
framework
::
Tensor
extra_host_tensor
=
ctx
.
AllocateTmpTensor
<
int8_t
,
platform
::
CPUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
extra_input_size
)},
cpu_ctx
);
cnnlInitPoolingExtraInput
(
handle
,
pool_desc
.
get
(),
in_x_desc
.
get
(),
out_desc
.
get
(),
GetBasePtr
(
&
extra_host_tensor
));
framework
::
Tensor
extra_device_tensor
=
ctx
.
AllocateTmpTensor
<
int8_t
,
MLUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
extra_input_size
)},
dev_ctx
);
// TODO(fwg): use Async copy, and add a callback to stream that free host
// memory.
framework
::
TensorCopySync
(
extra_host_tensor
,
ctx
.
GetPlace
(),
&
extra_device_tensor
);
MLUCnnl
::
PoolingForward
(
ctx
,
pool_mode
,
out_h
,
out_w
,
pool_desc
.
get
(),
nullptr
/*alpha*/
,
in_x_desc
.
get
(),
GetBasePtr
(
in_x
),
nullptr
/*beta*/
,
GetBasePtr
(
&
extra_device_tensor
)
/*params_shape_ptr*/
,
out_desc
.
get
(),
GetBasePtr
(
out
));
if
(
extra_input_size
>
0
)
{
paddle
::
platform
::
CPUDeviceContext
cpu_ctx
;
framework
::
Tensor
extra_host_tensor
=
ctx
.
AllocateTmpTensor
<
int8_t
,
platform
::
CPUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
extra_input_size
)},
cpu_ctx
);
cnnlInitPoolingExtraInput
(
handle
,
pool_desc
.
get
(),
in_x_desc
.
get
(),
out_desc
.
get
(),
GetBasePtr
(
&
extra_host_tensor
));
framework
::
Tensor
extra_device_tensor
=
ctx
.
AllocateTmpTensor
<
int8_t
,
MLUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
extra_input_size
)},
dev_ctx
);
// TODO(fwg): use Async copy, and add a callback to stream that free
// host
// memory.
framework
::
TensorCopySync
(
extra_host_tensor
,
ctx
.
GetPlace
(),
&
extra_device_tensor
);
MLUCnnl
::
PoolingForward
(
ctx
,
pool_mode
,
out_h
,
out_w
,
pool_desc
.
get
(),
nullptr
/*alpha*/
,
in_x_desc
.
get
(),
GetBasePtr
(
in_x
),
nullptr
/*beta*/
,
GetBasePtr
(
&
extra_device_tensor
)
/*params_shape_ptr*/
,
out_desc
.
get
(),
GetBasePtr
(
out
));
}
else
{
MLUCnnl
::
PoolingForward
(
ctx
,
pool_mode
,
out_h
,
out_w
,
pool_desc
.
get
(),
nullptr
/*alpha*/
,
in_x_desc
.
get
(),
GetBasePtr
(
in_x
),
nullptr
/*beta*/
,
nullptr
/*params_shape_ptr*/
,
out_desc
.
get
(),
GetBasePtr
(
out
));
}
}
else
{
MLUCnnl
::
PoolingForward
(
ctx
,
pool_mode
,
out_h
,
out_w
,
pool_desc
.
get
(),
nullptr
/*alpha*/
,
in_x_desc
.
get
(),
GetBasePtr
(
in_x
),
nullptr
/*beta*/
,
nullptr
/*params_shape_ptr*/
,
out_desc
.
get
(),
GetBasePtr
(
out
));
// cnnl Adaptive pooling only support NHWC layout
framework
::
Tensor
trans_in_x
;
framework
::
Tensor
trans_out
;
if
(
channel_last
)
{
trans_in_x
=
*
in_x
;
trans_out
=
*
out
;
}
else
{
std
::
vector
<
int
>
perm
{
0
,
2
,
3
,
1
};
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm
,
in_x
,
&
trans_in_x
,
true
/*need_reshape_or_alloc*/
);
trans_out
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
{
out_dims
[
0
],
out_dims
[
2
],
out_dims
[
3
],
out_dims
[
1
]},
dev_ctx
);
}
MLUCnnlTensorDesc
trans_in_x_desc
(
trans_in_x
,
CNNL_LAYOUT_NHWC
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
trans_out_desc
(
trans_out
,
CNNL_LAYOUT_NHWC
,
ToCnnlDataType
<
T
>
());
MLUCnnl
::
AdaptivePoolingForward
(
ctx
,
pool_mode
,
trans_in_x_desc
.
get
(),
GetBasePtr
(
&
trans_in_x
),
trans_out_desc
.
get
(),
GetBasePtr
(
&
trans_out
),
nullptr
,
nullptr
);
if
(
!
channel_last
)
{
std
::
vector
<
int
>
perm
{
0
,
3
,
1
,
2
};
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm
,
&
trans_out
,
out
,
false
/*need_reshape_or_alloc*/
);
}
}
}
};
...
...
@@ -204,7 +232,8 @@ class MLUPoolGradOpKernel : public framework::OpKernel<T> {
MLUCnnlTensorDesc
trans_in_x_grad_desc
(
trans_in_x_grad
,
CNNL_LAYOUT_NHWC
,
ToCnnlDataType
<
T
>
());
cnnlPoolingMode_t
pool_mode
=
ToCnnlPoolingMode
(
pooling_type
,
exclusive
);
cnnlPoolingMode_t
pool_mode
=
ToCnnlPoolingMode
(
pooling_type
,
exclusive
,
adaptive
);
MLUCnnlPoolingDesc
pool_desc
(
pool_mode
,
CNNL_NOT_PROPAGATE_NAN
,
ksize
[
0
],
ksize
[
1
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
],
paddings
[
3
],
strides
[
0
],
strides
[
1
],
...
...
@@ -219,18 +248,34 @@ class MLUPoolGradOpKernel : public framework::OpKernel<T> {
MLUCnnl
::
PoolingIndex
(
ctx
,
pool_desc
.
get
(),
trans_in_x_desc
.
get
(),
GetBasePtr
(
&
trans_in_x
),
index_tensor_desc
.
get
(),
GetBasePtr
(
&
index_tensor
));
MLUCnnl
::
PoolingBackward
(
ctx
,
pool_desc
.
get
(),
nullptr
/*alpha*/
,
index_tensor_desc
.
get
(),
GetBasePtr
(
&
index_tensor
),
trans_out_grad_desc
.
get
(),
GetBasePtr
(
&
trans_out_grad
),
trans_in_x_desc
.
get
(),
GetBasePtr
(
&
trans_in_x
),
nullptr
/*beta*/
,
trans_in_x_grad_desc
.
get
(),
GetBasePtr
(
&
trans_in_x_grad
));
if
(
adaptive
)
{
MLUCnnl
::
AdaptivePoolingBackward
(
ctx
,
pool_mode
,
trans_out_grad_desc
.
get
(),
GetBasePtr
(
&
trans_out_grad
),
index_tensor_desc
.
get
(),
GetBasePtr
(
&
index_tensor
),
trans_in_x_grad_desc
.
get
(),
GetBasePtr
(
&
trans_in_x_grad
));
}
else
{
MLUCnnl
::
PoolingBackward
(
ctx
,
pool_desc
.
get
(),
nullptr
/*alpha*/
,
index_tensor_desc
.
get
(),
GetBasePtr
(
&
index_tensor
),
trans_out_grad_desc
.
get
(),
GetBasePtr
(
&
trans_out_grad
),
trans_in_x_desc
.
get
(),
GetBasePtr
(
&
trans_in_x
),
nullptr
/*beta*/
,
trans_in_x_grad_desc
.
get
(),
GetBasePtr
(
&
trans_in_x_grad
));
}
}
else
{
MLUCnnl
::
PoolingBackward
(
ctx
,
pool_desc
.
get
(),
nullptr
/*alpha*/
,
nullptr
,
nullptr
,
trans_out_grad_desc
.
get
(),
GetBasePtr
(
&
trans_out_grad
),
nullptr
,
nullptr
,
nullptr
/*beta*/
,
trans_in_x_grad_desc
.
get
(),
GetBasePtr
(
&
trans_in_x_grad
));
if
(
adaptive
)
{
MLUCnnl
::
AdaptivePoolingBackward
(
ctx
,
pool_mode
,
trans_out_grad_desc
.
get
(),
GetBasePtr
(
&
trans_out_grad
),
nullptr
/*index_tensor_desc.get()*/
,
nullptr
/*GetBasePtr(&index_tensor)*/
,
trans_in_x_grad_desc
.
get
(),
GetBasePtr
(
&
trans_in_x_grad
));
}
else
{
MLUCnnl
::
PoolingBackward
(
ctx
,
pool_desc
.
get
(),
nullptr
/*alpha*/
,
nullptr
,
nullptr
,
trans_out_grad_desc
.
get
(),
GetBasePtr
(
&
trans_out_grad
),
nullptr
,
nullptr
,
nullptr
/*beta*/
,
trans_in_x_grad_desc
.
get
(),
GetBasePtr
(
&
trans_in_x_grad
));
}
}
if
(
!
channel_last
)
{
std
::
vector
<
int
>
perm
{
0
,
3
,
1
,
2
};
...
...
python/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py
浏览文件 @
f138371c
...
...
@@ -25,7 +25,125 @@ from paddle.fluid import Program, program_guard
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
from
test_pool2d_op
import
pool2D_forward_naive
,
avg_pool2D_forward_naive
,
max_pool2D_forward_naive
from
test_pool2d_op
import
pool2D_forward_naive
,
avg_pool2D_forward_naive
,
max_pool2D_forward_naive
,
adaptive_start_index
,
adaptive_end_index
def
pool2d_backward_navie
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
,
ceil_mode
=
False
,
exclusive
=
True
,
adaptive
=
False
,
data_format
=
'NCHW'
,
pool_type
=
"max"
,
padding_algorithm
=
"EXPLICIT"
):
# update paddings
def
_get_padding_with_SAME
(
input_shape
,
pool_size
,
pool_stride
):
padding
=
[]
for
input_size
,
filter_size
,
stride_size
in
zip
(
input_shape
,
pool_size
,
pool_stride
):
out_size
=
int
((
input_size
+
stride_size
-
1
)
/
stride_size
)
pad_sum
=
np
.
max
((
(
out_size
-
1
)
*
stride_size
+
filter_size
-
input_size
,
0
))
pad_0
=
int
(
pad_sum
/
2
)
pad_1
=
int
(
pad_sum
-
pad_0
)
padding
.
append
(
pad_0
)
padding
.
append
(
pad_1
)
return
padding
if
isinstance
(
padding_algorithm
,
str
):
padding_algorithm
=
padding_algorithm
.
upper
()
if
padding_algorithm
not
in
[
"SAME"
,
"VALID"
,
"EXPLICIT"
]:
raise
ValueError
(
"Unknown Attr(padding_algorithm): '%s'. "
"It can only be 'SAME' or 'VALID'."
%
str
(
padding_algorithm
))
if
padding_algorithm
==
"VALID"
:
paddings
=
[
0
,
0
,
0
,
0
]
if
ceil_mode
!=
False
:
raise
ValueError
(
"When Attr(pool_padding) is
\"
VALID
\"
, Attr(ceil_mode)"
" must be False. "
"Received ceil_mode: True."
)
elif
padding_algorithm
==
"SAME"
:
input_data_shape
=
[]
if
data_format
==
"NCHW"
:
input_data_shape
=
x
.
shape
[
2
:
4
]
elif
data_format
==
"NHWC"
:
input_data_shape
=
x
.
shape
[
1
:
3
]
paddings
=
_get_padding_with_SAME
(
input_data_shape
,
ksize
,
strides
)
assert
len
(
paddings
)
==
2
or
len
(
paddings
)
==
4
is_sys
=
True
if
len
(
paddings
)
==
2
else
False
if
data_format
==
"NHWC"
:
x
=
x
.
transpose
([
0
,
3
,
1
,
2
])
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
ksize
=
[
H
,
W
]
paddings
=
[
0
for
_
in
range
(
len
(
paddings
))]
pad_h_up
=
paddings
[
0
]
if
is_sys
else
paddings
[
0
]
pad_h_down
=
paddings
[
0
]
if
is_sys
else
paddings
[
1
]
pad_w_left
=
paddings
[
1
]
if
is_sys
else
paddings
[
2
]
pad_w_right
=
paddings
[
1
]
if
is_sys
else
paddings
[
3
]
if
adaptive
:
H_out
,
W_out
=
ksize
else
:
H_out
=
(
H
-
ksize
[
0
]
+
pad_h_up
+
pad_h_down
+
strides
[
0
]
-
1
)
//
strides
[
0
]
+
1
\
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
pad_h_up
+
pad_h_down
)
//
strides
[
0
]
+
1
W_out
=
(
W
-
ksize
[
1
]
+
pad_w_left
+
pad_w_right
+
strides
[
1
]
-
1
)
//
strides
[
1
]
+
1
\
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
pad_w_left
+
pad_w_right
)
//
strides
[
1
]
+
1
x_grad
=
np
.
zeros_like
(
x
)
for
i
in
range
(
H_out
):
if
adaptive
:
in_h_start
=
adaptive_start_index
(
i
,
H
,
ksize
[
0
])
in_h_end
=
adaptive_end_index
(
i
,
H
,
ksize
[
0
])
else
:
in_h_start
=
np
.
max
((
i
*
strides
[
0
]
-
pad_h_up
,
0
))
in_h_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
pad_h_up
,
H
))
for
j
in
range
(
W_out
):
if
adaptive
:
in_w_start
=
adaptive_start_index
(
j
,
W
,
ksize
[
1
])
in_w_end
=
adaptive_end_index
(
j
,
W
,
ksize
[
1
])
else
:
in_h_start
=
i
*
strides
[
0
]
-
pad_h_up
in_w_start
=
j
*
strides
[
1
]
-
pad_w_left
in_h_end
=
i
*
strides
[
0
]
+
ksize
[
0
]
-
pad_h_up
in_w_end
=
j
*
strides
[
1
]
+
ksize
[
1
]
-
pad_w_left
field_size
=
(
in_h_end
-
in_h_start
)
*
(
in_w_end
-
in_w_start
)
in_h_start
=
np
.
max
((
in_h_start
,
0
))
in_w_start
=
np
.
max
((
in_w_start
,
0
))
in_h_end
=
np
.
min
((
in_h_end
,
H
))
in_w_end
=
np
.
min
((
in_w_end
,
W
))
if
pool_type
==
'avg'
:
if
(
exclusive
or
adaptive
):
field_size
=
(
in_h_end
-
in_h_start
)
*
(
in_w_end
-
in_w_start
)
x_grad
[:,
:,
in_h_start
:
in_h_end
,
in_w_start
:
in_w_end
]
+=
1
/
field_size
elif
pool_type
==
'max'
:
for
n
in
range
(
N
):
for
c
in
range
(
C
):
idx
=
np
.
argmax
(
x
[
n
,
c
,
in_h_start
:
in_h_end
,
in_w_start
:
in_w_end
].
flatten
())
idx_h
=
idx
//
(
in_w_end
-
in_w_start
)
idx_w
=
idx
%
(
in_w_end
-
in_w_start
)
x_grad
[
n
,
c
,
in_h_start
+
idx_h
,
in_w_start
+
idx_w
]
+=
1
if
data_format
==
"NHWC"
:
x_grad
=
x_grad
.
transpose
([
0
,
2
,
3
,
1
])
return
x_grad
class
TestPool2D_Op_Mixin
(
object
):
...
...
@@ -71,12 +189,25 @@ class TestPool2D_Op_Mixin(object):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
if
self
.
pool_type
!=
"max"
:
self
.
check_grad_with_place
(
self
.
place
,
set
([
'X'
]),
'Out'
,
max_relative_error
=
0.07
)
x_grad
=
pool2d_backward_navie
(
self
.
inputs
[
"X"
],
ksize
=
self
.
ksize
,
strides
=
self
.
strides
,
paddings
=
self
.
paddings
,
global_pool
=
self
.
global_pool
,
ceil_mode
=
False
,
exclusive
=
self
.
exclusive
,
adaptive
=
self
.
adaptive
,
data_format
=
self
.
data_format
,
pool_type
=
self
.
pool_type
,
padding_algorithm
=
self
.
padding_algorithm
)
x_grad
=
x_grad
/
np
.
prod
(
self
.
outputs
[
'Out'
].
shape
)
self
.
check_grad_with_place
(
self
.
place
,
set
([
'X'
]),
'Out'
,
max_relative_error
=
0.06
,
user_defined_grads
=
[
x_grad
])
def
init_data_format
(
self
):
self
.
data_format
=
"NCHW"
...
...
@@ -108,7 +239,6 @@ class TestPool2D_Op_Mixin(object):
def
init_exclusive
(
self
):
self
.
exclusive
=
True
# Not support adaptive pooling currently
def
init_adaptive
(
self
):
self
.
adaptive
=
False
...
...
@@ -173,7 +303,7 @@ class TestCase5(TestCase2):
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
def
create_test_fp16_class
(
parent
,
check_grad
=
True
):
def
create_test_fp16_class
(
parent
):
class
TestFp16Case
(
parent
):
def
init_data_type
(
self
):
self
.
dtype
=
np
.
float16
...
...
@@ -182,19 +312,13 @@ def create_test_fp16_class(parent, check_grad=True):
place
=
core
.
MLUPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
def
test_check_grad
(
self
):
place
=
core
.
MLUPlace
(
0
)
if
self
.
pool_type
!=
"max"
and
check_grad
:
self
.
check_grad_with_place
(
place
,
set
([
'X'
]),
'Out'
,
max_relative_error
=
0.07
)
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"Fp16Op"
)
TestFp16Case
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestFp16Case
create_test_fp16_class
(
TestPool2D_Op
)
create_test_fp16_class
(
TestCase1
,
check_grad
=
False
)
create_test_fp16_class
(
TestCase1
)
create_test_fp16_class
(
TestCase2
)
create_test_fp16_class
(
TestCase3
)
create_test_fp16_class
(
TestCase4
)
...
...
@@ -222,6 +346,24 @@ class TestAvgInclude(TestCase2):
self
.
exclusive
=
False
class
TestAvgPoolAdaptive
(
TestCase1
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
class
TestAvgPoolAdaptiveAsyOutSize
(
TestCase1
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
def
init_shape
(
self
):
self
.
shape
=
[
8
,
3
,
6
,
6
]
def
init_test_case
(
self
):
self
.
ksize
=
[
2
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
0
,
0
,
0
,
0
]
#-------test pool2d with asymmetric padding-----
...
...
@@ -302,6 +444,19 @@ class TestAvgInclude_AsyPadding(TestCase2):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestAvgPoolAdaptive_AsyPadding
(
TestCase1
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
1
,
0
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
#----------- test channel_last --------------
class
TestPool2D_channel_last
(
TestPool2D_Op
):
def
init_data_format
(
self
):
...
...
@@ -359,14 +514,6 @@ class TestCase5_Max(TestCase2):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
place
=
core
.
MLUPlace
(
0
)
if
self
.
pool_type
==
"max"
:
self
.
check_grad_with_place
(
place
,
set
([
'X'
]),
'Out'
,
max_relative_error
=
1.00
)
class
TestCase5_channel_last_Max
(
TestCase5_Max
):
def
init_data_format
(
self
):
...
...
@@ -381,6 +528,11 @@ class TestAvgInclude_channel_last(TestCase2_channel_last):
self
.
exclusive
=
False
class
TestAvgPoolAdaptive_channel_last
(
TestCase1_channel_last
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
class
TestPool2D_AsyPadding_channel_last
(
TestPool2D_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录