attribute.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define functions to get tensor attributes
16

17
import numpy as np
18

19
import paddle
20
from paddle import _C_ops, _legacy_C_ops
21

22 23 24 25 26
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
from ..framework import LayerHelper, core
from ..static import Variable
from .creation import _complex_to_real_dtype, assign
27

28 29
__all__ = []

30

31 32 33
def rank(input):
    """

C
Chen Long 已提交
34
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
35 36

    Args:
C
Chen Long 已提交
37
        input (Tensor): The input Tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

    Returns:
        Tensor, the output data type is int32.: The 0-D tensor with the dimensions of the input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand((3, 100, 100))
            rank = paddle.rank(input)
            print(rank)
            # 3
    """
    check_type(input, 'input', (Variable), 'input')
    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


def shape(input):
    """
    Get the shape of the input.

    .. code-block:: text

        Case1:
            Given N-D Tensor:
                input = [ [1, 2, 3, 4], [5, 6, 7, 8] ]

            Then:
                input.shape = [2, 4]

        Case2:
            Given SelectedRows:
                input.rows = [0, 4, 19]
                input.height = 20
                input.value = [ [1, 2], [3, 4], [5, 6] ]  # inner tensor
            Then:
                input.shape = [3, 2]

    Args:
        input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64.
                          If input variable is type of SelectedRows, returns the shape of it's inner tensor.

    Returns:
        Variable (Tensor): The shape of the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()

            inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
    """
    if in_dygraph_mode():
107
        out = _C_ops.shape(input)
108 109 110
        out.stop_gradient = True
        return out
    if _in_legacy_dygraph():
111
        out = _legacy_C_ops.shape(input)
112 113
        out.stop_gradient = True
        return out
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'shape',
    )
130 131
    helper = LayerHelper('shape', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
132 133 134 135 136 137
    helper.append_op(
        type='shape',
        inputs={'Input': input},
        outputs={'Out': out},
        stop_gradient=True,
    )
138

139
    return out
140 141 142


def is_complex(x):
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    """Return whether x is a tensor of complex data type(complex64 or complex128).

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the data type of the input is complex data type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1 + 2j, 3 + 4j])
            print(paddle.is_complex(x))
            # True

            x = paddle.to_tensor([1.1, 1.2])
            print(paddle.is_complex(x))
            # False

            x = paddle.to_tensor([1, 2, 3])
            print(paddle.is_complex(x))
            # False
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
169 170 171
        raise TypeError(
            "Expected Tensor, but received type of x: {}".format(type(x))
        )
172
    dtype = x.dtype
173 174 175 176
    is_complex_dtype = (
        dtype == core.VarDesc.VarType.COMPLEX64
        or dtype == core.VarDesc.VarType.COMPLEX128
    )
177 178 179 180
    return is_complex_dtype


def is_floating_point(x):
W
wuhuanzhou 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    """
    Returns whether the dtype of `x` is one of paddle.float64, paddle.float32, paddle.float16, and paddle.bfloat16.

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the dtype of `x` is floating type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.arange(1, 5, dtype='int32')
            print(paddle.is_floating_point(x))
            # True
            print(paddle.is_floating_point(y))
            # False
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
203 204 205
        raise TypeError(
            "Expected Tensor, but received type of x: {}".format(type(x))
        )
206
    dtype = x.dtype
207 208 209 210 211 212
    is_fp_dtype = (
        dtype == core.VarDesc.VarType.FP32
        or dtype == core.VarDesc.VarType.FP64
        or dtype == core.VarDesc.VarType.FP16
        or dtype == core.VarDesc.VarType.BF16
    )
213 214 215
    return is_fp_dtype


216
def is_integer(x):
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    """Return whether x is a tensor of integeral data type.

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the data type of the input is integer data type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1 + 2j, 3 + 4j])
            print(paddle.is_integer(x))
            # False

            x = paddle.to_tensor([1.1, 1.2])
            print(paddle.is_integer(x))
            # False

            x = paddle.to_tensor([1, 2, 3])
            print(paddle.is_integer(x))
            # True
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
243 244 245
        raise TypeError(
            "Expected Tensor, but received type of x: {}".format(type(x))
        )
246
    dtype = x.dtype
247 248 249 250 251 252 253
    is_int_dtype = (
        dtype == core.VarDesc.VarType.UINT8
        or dtype == core.VarDesc.VarType.INT8
        or dtype == core.VarDesc.VarType.INT16
        or dtype == core.VarDesc.VarType.INT32
        or dtype == core.VarDesc.VarType.INT64
    )
254 255 256
    return is_int_dtype


257 258
def real(x, name=None):
    """
C
Chen Long 已提交
259
    Returns a new Tensor containing real values of the input Tensor.
260 261

    Args:
C
Chen Long 已提交
262
        x (Tensor): the input Tensor, its data type could be complex64 or complex128.
263 264
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name` .
265

266
    Returns:
C
Chen Long 已提交
267
        Tensor: a Tensor containing real values of the input Tensor.
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor(
                [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]])
            # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[(1+6j), (2+5j), (3+4j)],
            #         [(4+3j), (5+2j), (6+1j)]])

            real_res = paddle.real(x)
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])

            real_t = x.real()
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
    """
Z
zyfncg 已提交
290
    if in_dygraph_mode():
W
wanghuancoder 已提交
291
        return _C_ops.real(x)
292 293
    if _in_legacy_dygraph():
        return _legacy_C_ops.real(x)
294 295 296 297

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'real')
    helper = LayerHelper('real', **locals())
    out = helper.create_variable_for_type_inference(
298 299
        dtype=_complex_to_real_dtype(helper.input_dtype())
    )
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    helper.append_op(type='real', inputs={'X': x}, outputs={'Out': out})
    return out


def imag(x, name=None):
    """
    Returns a new tensor containing imaginary values of input tensor.

    Args:
        x (Tensor): the input tensor, its data type could be complex64 or complex128.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: a tensor containing imaginary values of the input tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor(
                [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]])
            # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[(1+6j), (2+5j), (3+4j)],
            #         [(4+3j), (5+2j), (6+1j)]])

            imag_res = paddle.imag(x)
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[6., 5., 4.],
            #         [3., 2., 1.]])

            imag_t = x.imag()
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[6., 5., 4.],
            #         [3., 2., 1.]])
    """
Z
zyfncg 已提交
337
    if in_dygraph_mode():
W
wanghuancoder 已提交
338
        return _C_ops.imag(x)
339 340
    if _in_legacy_dygraph():
        return _legacy_C_ops.imag(x)
341 342 343 344

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'imag')
    helper = LayerHelper('imag', **locals())
    out = helper.create_variable_for_type_inference(
345 346
        dtype=_complex_to_real_dtype(helper.input_dtype())
    )
347 348
    helper.append_op(type='imag', inputs={'X': x}, outputs={'Out': out})
    return out