attribute.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
from ..framework import core, _non_static_mode
from ..framework import LayerHelper
19
from ..fluid.data_feeder import check_variable_and_dtype
20 21 22 23
from ..fluid.data_feeder import check_type

from .creation import assign
from .creation import _complex_to_real_dtype
24

Z
zyfncg 已提交
25
# TODO: define functions to get tensor attributes
26
import paddle
W
wanghuancoder 已提交
27
from paddle import _C_ops
28
from ..static import Variable
Z
zyfncg 已提交
29
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
30

31 32
import numpy as np

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def rank(input):
    """

    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.

    Args:
        input (Tensor): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.

    Returns:
        Tensor, the output data type is int32.: The 0-D tensor with the dimensions of the input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand((3, 100, 100))
            rank = paddle.rank(input)
            print(rank)
            # 3
    """
    check_type(input, 'input', (Variable), 'input')
    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


def shape(input):
    """
    :alias_main: paddle.shape
	:alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape
	:old_api: paddle.fluid.layers.shape

    **Shape Layer**

    Get the shape of the input.

    .. code-block:: text

        Case1:
            Given N-D Tensor:
                input = [ [1, 2, 3, 4], [5, 6, 7, 8] ]

            Then:
                input.shape = [2, 4]

        Case2:
            Given SelectedRows:
                input.rows = [0, 4, 19]
                input.height = 20
                input.value = [ [1, 2], [3, 4], [5, 6] ]  # inner tensor
            Then:
                input.shape = [3, 2]

    Args:
        input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64.
                          If input variable is type of SelectedRows, returns the shape of it's inner tensor.

    Returns:
        Variable (Tensor): The shape of the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()

            inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
    """
    if in_dygraph_mode():
        out = _C_ops.final_state_shape(input)
        out.stop_gradient = True
        return out
    if _in_legacy_dygraph():
        out = _C_ops.shape(input)
        out.stop_gradient = True
        return out
125

126 127 128 129 130 131 132 133 134 135 136
    check_variable_and_dtype(input, 'input', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'shape')
    helper = LayerHelper('shape', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='shape',
        inputs={'Input': input},
        outputs={'Out': out},
        stop_gradient=True)
137

138
    return out
139 140 141


def is_complex(x):
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    """Return whether x is a tensor of complex data type(complex64 or complex128).

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the data type of the input is complex data type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1 + 2j, 3 + 4j])
            print(paddle.is_complex(x))
            # True

            x = paddle.to_tensor([1.1, 1.2])
            print(paddle.is_complex(x))
            # False

            x = paddle.to_tensor([1, 2, 3])
            print(paddle.is_complex(x))
            # False
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
        raise TypeError("Expected Tensor, but received type of x: {}".format(
            type(x)))
170 171 172 173 174 175 176
    dtype = x.dtype
    is_complex_dtype = (dtype == core.VarDesc.VarType.COMPLEX64 or
                        dtype == core.VarDesc.VarType.COMPLEX128)
    return is_complex_dtype


def is_floating_point(x):
W
wuhuanzhou 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    """
    Returns whether the dtype of `x` is one of paddle.float64, paddle.float32, paddle.float16, and paddle.bfloat16.

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the dtype of `x` is floating type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.arange(1, 5, dtype='int32')
            print(paddle.is_floating_point(x))
            # True
            print(paddle.is_floating_point(y))
            # False
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
        raise TypeError("Expected Tensor, but received type of x: {}".format(
            type(x)))
201 202 203 204 205 206 207 208
    dtype = x.dtype
    is_fp_dtype = (dtype == core.VarDesc.VarType.FP32 or
                   dtype == core.VarDesc.VarType.FP64 or
                   dtype == core.VarDesc.VarType.FP16 or
                   dtype == core.VarDesc.VarType.BF16)
    return is_fp_dtype


209
def is_integer(x):
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    """Return whether x is a tensor of integeral data type.

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the data type of the input is integer data type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1 + 2j, 3 + 4j])
            print(paddle.is_integer(x))
            # False

            x = paddle.to_tensor([1.1, 1.2])
            print(paddle.is_integer(x))
            # False

            x = paddle.to_tensor([1, 2, 3])
            print(paddle.is_integer(x))
            # True
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
        raise TypeError("Expected Tensor, but received type of x: {}".format(
            type(x)))
238 239 240 241 242 243 244 245 246
    dtype = x.dtype
    is_int_dtype = (dtype == core.VarDesc.VarType.UINT8 or
                    dtype == core.VarDesc.VarType.INT8 or
                    dtype == core.VarDesc.VarType.INT16 or
                    dtype == core.VarDesc.VarType.INT32 or
                    dtype == core.VarDesc.VarType.INT64)
    return is_int_dtype


247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
def real(x, name=None):
    """
    Returns a new tensor containing real values of the input tensor.

    Args:
        x (Tensor): the input tensor, its data type could be complex64 or complex128.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name` .
      
    Returns:
        Tensor: a tensor containing real values of the input tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor(
                [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]])
            # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[(1+6j), (2+5j), (3+4j)],
            #         [(4+3j), (5+2j), (6+1j)]])

            real_res = paddle.real(x)
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])

            real_t = x.real()
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
    """
Z
zyfncg 已提交
280 281 282
    if in_dygraph_mode():
        return _C_ops.final_state_real(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
283
        return _C_ops.real(x)
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'real')
    helper = LayerHelper('real', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(helper.input_dtype()))
    helper.append_op(type='real', inputs={'X': x}, outputs={'Out': out})
    return out


def imag(x, name=None):
    """
    Returns a new tensor containing imaginary values of input tensor.

    Args:
        x (Tensor): the input tensor, its data type could be complex64 or complex128.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: a tensor containing imaginary values of the input tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor(
                [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]])
            # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[(1+6j), (2+5j), (3+4j)],
            #         [(4+3j), (5+2j), (6+1j)]])

            imag_res = paddle.imag(x)
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[6., 5., 4.],
            #         [3., 2., 1.]])

            imag_t = x.imag()
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[6., 5., 4.],
            #         [3., 2., 1.]])
    """
Z
zyfncg 已提交
326 327 328
    if in_dygraph_mode():
        return _C_ops.final_state_imag(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
329
        return _C_ops.imag(x)
330 331 332 333 334 335 336

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'imag')
    helper = LayerHelper('imag', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(helper.input_dtype()))
    helper.append_op(type='imag', inputs={'X': x}, outputs={'Out': out})
    return out