activation_mkldnn_op.cc 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
16
#include "paddle/fluid/platform/mkldnn_reuse.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
29

30 31 32 33 34 35
template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
36 37
    PADDLE_ENFORCE_EQ(x->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for X tensor");
A
Adam 已提交
38
    PADDLE_ENFORCE_NE(x->format(), MKLDNNMemoryFormat::undef,
39
                      "Wrong format set for X tensor");
40 41 42 43 44

    Functor functor;
    functor(ctx);
  }
};
K
Krzysztof Binias 已提交
45

46 47 48 49 50 51
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
52 53
    PADDLE_ENFORCE_EQ(diff_y->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input OutGrad tensor");
A
Adam 已提交
54
    PADDLE_ENFORCE_NE(diff_y->format(), MKLDNNMemoryFormat::undef,
55
                      "Wrong format set for Input OutGrad tensor");
56 57 58 59 60 61 62 63

    Functor functor;
    functor(ctx);
  }
};

template <typename T>
void eltwise_forward(const framework::ExecutionContext &ctx,
A
Adam 已提交
64
                     mkldnn::algorithm algorithm) {
65 66 67 68
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                 "It must use CPUPlace.");
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

69 70
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
71

72 73 74 75 76 77 78
  T alpha = ctx.HasAttr("alpha") ? ctx.Attr<T>("alpha") : 0;
  T beta = ctx.HasAttr("beta") ? ctx.Attr<T>("beta") : 0;

  // paddle uses beta but mkldnn uses alpha for swish
  if (algorithm == mkldnn::algorithm::eltwise_swish) {
    std::swap(alpha, beta);
  }
A
Adam 已提交
79

Y
Yihua Xu 已提交
80 81 82 83
  PADDLE_ENFORCE(
      x->dims().size() == 2 || x->dims().size() == 3 || x->dims().size() == 4,
      "Input dim must be with 2, 3 or 4");

A
Adam 已提交
84
  auto src_tz = framework::vectorize<int64_t>(x->dims());
85

86
  auto src_format = src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : x->format();
87

88
  platform::ActivationMKLDNNHandler<T> handler(
89 90
      src_tz, algorithm, alpha, beta, src_format, dev_ctx, ctx.GetPlace(),
      ctx.InputName("X"));
91

92 93
  auto src_memory_p = handler.AcquireSrcMemory(x);
  auto dst_memory_p = handler.AcquireDstMemory(y);
A
Adam 已提交
94
  auto activation_p = handler.AcquireForwardPrimitive();
95

A
Adam 已提交
96 97 98 99
  mkldnn::stream astream(dev_ctx.GetEngine());
  activation_p->execute(astream, {{MKLDNN_ARG_FROM, *src_memory_p},
                                  {MKLDNN_ARG_TO, *dst_memory_p}});
  astream.wait();
100

101
  y->set_layout(DataLayout::kMKLDNN);
102
  y->set_format(GetMKLDNNFormat(*dst_memory_p));
103 104
}

105 106
template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx,
A
Adam 已提交
107
                  mkldnn::algorithm algorithm) {
108 109
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

110
  const auto *x = ctx.Input<Tensor>("X");
111 112
  const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
113

114 115 116 117 118 119 120
  T alpha = ctx.HasAttr("alpha") ? ctx.Attr<T>("alpha") : 0;
  T beta = ctx.HasAttr("beta") ? ctx.Attr<T>("beta") : 0;

  // paddle uses beta but mkldnn uses alpha for swish
  if (algorithm == mkldnn::algorithm::eltwise_swish) {
    std::swap(alpha, beta);
  }
A
Adam 已提交
121

A
Adam 已提交
122
  auto diff_dst_tz = framework::vectorize<int64_t>(diff_y->dims());
K
Krzysztof Binias 已提交
123

124 125
  // diff_dst and src dims should be the same
  auto src_format =
126
      diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : x->format();
127

128
  auto diff_y_format =
129
      diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : diff_y->format();
130

131 132
  platform::ActivationMKLDNNHandler<T> handler(
      diff_dst_tz, algorithm, alpha, beta, src_format, diff_y_format, dev_ctx,
H
hong 已提交
133
      ctx.GetPlace(), ctx.InputName("X"));
134

135 136 137
  auto src_memory_p = handler.AcquireBackwardSrcMemory(x);
  auto diff_dst_memory_p = handler.AcquireDiffDstMemory(diff_y);
  auto diff_src_memory_p = handler.AcquireDiffSrcMemory(diff_x);
A
Adam 已提交
138 139 140 141 142 143 144 145
  auto activation_backward_p = handler.AcquireBackwardPrimitive();

  mkldnn::stream astream(dev_ctx.GetEngine());
  activation_backward_p->execute(astream,
                                 {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
                                  {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
  astream.wait();
146

147
  diff_x->set_layout(DataLayout::kMKLDNN);
148
  diff_x->set_format(GetMKLDNNFormat(*diff_src_memory_p));
149 150 151 152
}

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
153
  void operator()(const framework::ExecutionContext &ctx) const {
154 155 156 157 158 159
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
160
  void operator()(const framework::ExecutionContext &ctx) const {
161 162 163 164
    eltwise_grad<T>(ctx, algorithm);
  }
};

A
Adam 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
template <typename T>
struct GeluMKLDNNFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const bool approximate = ctx.Attr<bool>("approximate");
    if (approximate) {
      eltwise_forward<T>(ctx, mkldnn::algorithm::eltwise_gelu_tanh);
    } else {
      eltwise_forward<T>(ctx, mkldnn::algorithm::eltwise_gelu_erf);
    }
  }
};

template <typename T>
struct GeluMKLDNNGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const bool approximate = ctx.Attr<bool>("approximate");
    if (approximate) {
      eltwise_grad<T>(ctx, mkldnn::algorithm::eltwise_gelu_tanh);
    } else {
      eltwise_grad<T>(ctx, mkldnn::algorithm::eltwise_gelu_erf);
    }
  }
};

189
template <typename T>
T
tensor-tang 已提交
190
using ReluMKLDNNFunctor =
191 192
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

193 194 195 196
template <typename T>
using SwishMKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_swish>;

197
template <typename T>
T
tensor-tang 已提交
198
using TanhMKLDNNFunctor =
199 200 201
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
202
using SqrtMKLDNNFunctor =
203 204 205
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
206
using AbsMKLDNNFunctor =
207 208 209
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
T
tensor-tang 已提交
210
using ReluMKLDNNGradFunctor =
211 212
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

213 214 215 216
template <typename T>
using SwishMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_swish>;

217
template <typename T>
T
tensor-tang 已提交
218
using TanhMKLDNNGradFunctor =
219 220 221
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
222
using SqrtMKLDNNGradFunctor =
223 224 225
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
226
using AbsMKLDNNGradFunctor =
227 228 229 230 231 232 233 234 235 236 237 238 239
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

A
Adam 已提交
240 241 242
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)                  \
  __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor);       \
  __macro(leaky_relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \
A
Adam 已提交
243
  __macro(gelu, GeluMKLDNNFunctor, GeluMKLDNNGradFunctor);       \
244
  __macro(swish, SwishMKLDNNFunctor, SwishMKLDNNGradFunctor);    \
A
Adam 已提交
245 246
  __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor);       \
  __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor);       \
T
tensor-tang 已提交
247
  __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);
248 249

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);