activation_mkldnn_op.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
16
#include "paddle/fluid/platform/mkldnn_reuse.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
29

30 31 32 33 34 35
template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
36 37 38 39
    PADDLE_ENFORCE_EQ(x->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for X tensor");
    PADDLE_ENFORCE_NE(x->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for X tensor");
40 41 42 43 44

    Functor functor;
    functor(ctx);
  }
};
K
Krzysztof Binias 已提交
45

46 47 48 49 50 51
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
52 53 54 55
    PADDLE_ENFORCE_EQ(diff_y->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input OutGrad tensor");
    PADDLE_ENFORCE_NE(diff_y->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input OutGrad tensor");
56

57 58
    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
59 60
        "is_test attribute should be set to False in training phase.");

61 62 63 64 65 66 67
    Functor functor;
    functor(ctx);
  }
};

template <typename T>
void eltwise_forward(const framework::ExecutionContext &ctx,
A
Adam 已提交
68
                     mkldnn::algorithm algorithm) {
69 70 71 72
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                 "It must use CPUPlace.");
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

73 74
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
75

A
Adam 已提交
76 77 78
  const T alpha = ctx.op().HasAttr("alpha") ? ctx.Attr<T>("alpha") : 0;
  const T beta = ctx.op().HasAttr("beta") ? ctx.Attr<T>("beta") : 0;

Y
Yihua Xu 已提交
79 80 81 82
  PADDLE_ENFORCE(
      x->dims().size() == 2 || x->dims().size() == 3 || x->dims().size() == 4,
      "Input dim must be with 2, 3 or 4");

83
  auto src_tz = framework::vectorize<int>(x->dims());
84

85
  auto src_format = src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : x->format();
86

87 88
  bool is_test = ctx.Attr<bool>("is_test");

89 90 91
  platform::ActivationMKLDNNHandler<T> handler(
      src_tz, algorithm, alpha, beta, src_format, is_test, dev_ctx,
      ctx.GetPlace(), ctx.op().Input("X"));
92

93 94
  auto src_memory_p = handler.AcquireSrcMemory(x);
  auto dst_memory_p = handler.AcquireDstMemory(y);
95 96
  auto activation_p =
      handler.AcquireForwardPrimitive(*src_memory_p, *dst_memory_p);
97

98
  // push primitive to stream and wait until it's executed
99
  std::vector<primitive> pipeline;
100
  pipeline.push_back(*activation_p);
101 102
  stream(stream::kind::eager).submit(pipeline).wait();

103
  y->set_layout(DataLayout::kMKLDNN);
104
  y->set_format(GetMKLDNNFormat(*dst_memory_p));
105 106
}

107 108
template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx,
A
Adam 已提交
109
                  mkldnn::algorithm algorithm) {
110 111
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

112
  const auto *x = ctx.Input<Tensor>("X");
113 114
  const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
115

A
Adam 已提交
116 117 118
  const T alpha = ctx.op().HasAttr("alpha") ? ctx.Attr<T>("alpha") : 0;
  const T beta = ctx.op().HasAttr("beta") ? ctx.Attr<T>("beta") : 0;

119
  auto diff_dst_tz = framework::vectorize<int>(diff_y->dims());
K
Krzysztof Binias 已提交
120

121 122
  // diff_dst and src dims should be the same
  auto src_format =
123
      diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : x->format();
124

125
  auto diff_y_format =
126
      diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : diff_y->format();
127

128 129 130
  platform::ActivationMKLDNNHandler<T> handler(
      diff_dst_tz, algorithm, alpha, beta, src_format, diff_y_format, dev_ctx,
      ctx.GetPlace(), ctx.op().Input("X"));
131

132 133 134
  auto src_memory_p = handler.AcquireBackwardSrcMemory(x);
  auto diff_dst_memory_p = handler.AcquireDiffDstMemory(diff_y);
  auto diff_src_memory_p = handler.AcquireDiffSrcMemory(diff_x);
135 136
  auto activation_backward_p = handler.AcquireBackwardPrimitive(
      *src_memory_p, *diff_dst_memory_p, *diff_src_memory_p);
137 138

  // push primitive to stream and wait until it's executed
139
  std::vector<primitive> pipeline;
140
  pipeline.push_back(*activation_backward_p);
141 142
  stream(stream::kind::eager).submit(pipeline).wait();

143
  diff_x->set_layout(DataLayout::kMKLDNN);
144
  diff_x->set_format(GetMKLDNNFormat(*diff_src_memory_p));
145 146 147 148
}

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
149
  void operator()(const framework::ExecutionContext &ctx) const {
150 151 152 153 154 155
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
156
  void operator()(const framework::ExecutionContext &ctx) const {
157 158 159 160 161
    eltwise_grad<T>(ctx, algorithm);
  }
};

template <typename T>
T
tensor-tang 已提交
162
using ReluMKLDNNFunctor =
163 164 165
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
T
tensor-tang 已提交
166
using TanhMKLDNNFunctor =
167 168 169
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
170
using SqrtMKLDNNFunctor =
171 172 173
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
174
using AbsMKLDNNFunctor =
175 176 177
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
T
tensor-tang 已提交
178
using ReluMKLDNNGradFunctor =
179 180 181
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
T
tensor-tang 已提交
182
using TanhMKLDNNGradFunctor =
183 184 185
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
186
using SqrtMKLDNNGradFunctor =
187 188 189
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
190
using AbsMKLDNNGradFunctor =
191 192 193 194 195 196 197 198 199 200 201 202 203
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

A
Adam 已提交
204 205 206 207 208
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)                  \
  __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor);       \
  __macro(leaky_relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \
  __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor);       \
  __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor);       \
T
tensor-tang 已提交
209
  __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);
210 211

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);