warpctc_kernel_impl.h 16.9 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <vector>

#include "paddle/phi/backends/dynload/warpctc.h"
#include "paddle/phi/core/dense_tensor.h"
21
#include "paddle/phi/core/lod_utils.h"
22
#include "paddle/phi/core/tensor_utils.h"
0
0x45f 已提交
23 24
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
25
#include "paddle/phi/kernels/funcs/sequence_padding.h"
26
#include "paddle/phi/kernels/funcs/sequence_scale.h"
0
0x45f 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#include "paddle/utils/optional.h"

namespace phi {

template <typename Context, typename T>
class ComputeCtcLossFunctor {
 public:
  ctcStatus_t operator()(const T* const activations,
                         T* gradients,
                         const int* const flat_labels,
                         const int* const label_lengths,
                         const int* const input_lengths,
                         int alphabet_size,
                         int minibatch,
                         T* costs,
                         void* workspace,
                         ctcOptions options) {
    return CTC_STATUS_EXECUTION_FAILED;
  }
};

template <typename Context>
class ComputeCtcLossFunctor<Context, float> {
 public:
  ctcStatus_t operator()(const float* const activations,
                         float* gradients,
                         const int* const flat_labels,
                         const int* const label_lengths,
                         const int* const input_lengths,
                         int alphabet_size,
                         int minibatch,
                         float* costs,
                         void* workspace,
                         ctcOptions options) {
    return phi::dynload::compute_ctc_loss(activations,
                                          gradients,
                                          flat_labels,
                                          label_lengths,
                                          input_lengths,
                                          static_cast<int>(alphabet_size),
                                          static_cast<int>(minibatch),
                                          costs,
                                          workspace,
                                          options);
  }
};

template <typename Context>
class ComputeCtcLossFunctor<Context, double> {
 public:
  ctcStatus_t operator()(const double* const activations,
                         double* gradients,
                         const int* const flat_labels,
                         const int* const label_lengths,
                         const int* const input_lengths,
                         int alphabet_size,
                         int minibatch,
                         double* costs,
                         void* workspace,
                         ctcOptions options) {
    return phi::dynload::compute_ctc_loss_double(
        activations,
        gradients,
        flat_labels,
        label_lengths,
        input_lengths,
        static_cast<int>(alphabet_size),
        static_cast<int>(minibatch),
        costs,
        workspace,
        options);
  }
};

template <typename Context, typename T>
class WarpCTCFunctor {
 public:
  /*
   * \brief Compute the connectionist temporal classification loss,
   *        and optionally compute the gradient with respect to the inputs.
   *
   * If gradient is nullptr, it only computes the ctc loss,
   * or computes both ctc loss and gradient.
   *
   * \param ctx               execution context of this functor
   * \param input             batch matrix of input probabilities, in
   *                          max_sequence_length x num_sequences x
   *                          sequence_width, (row-major) format
   * \param gradient          batch matrix of gradient, with the same shape as
   *                          input.
   * \param cpu_labels        labels always in CPU memory.
   * \param cpu_label_lengths length of all labels in CPU memory.
   * \param cpu_input_lengths length of all sequences in CPU memory.
   * \param sequence_width    number of possible output symbols.
   * \param num_sequences     number of sequence.
   * \param blank             blank label used in ctc loss function.
   * \param cpu_losss         cost of each sequence in CPU memory.
   */
  void operator()(const Context& dev_ctx,
                  const T* input,
                  T* gradient,
                  const int* cpu_labels,
                  const int* cpu_label_lengths,
                  const int* cpu_input_lengths,
                  const size_t sequence_width,
                  const size_t num_sequences,
                  const size_t blank,
                  T* cpu_loss) {
    // Init warp-ctc options
    init(dev_ctx, blank);

    // Compute the required workspace size.
    // There is no memory allocated operations within warp-ctc.
    size_t workspace_bytes = 0;
    ctcStatus_t status = CTC_STATUS_UNKNOWN_ERROR;
    if (sizeof(T) == 4) {
      status =
          phi::dynload::get_workspace_size(cpu_label_lengths,
                                           cpu_input_lengths,
                                           static_cast<int>(sequence_width),
                                           static_cast<int>(num_sequences),
                                           options_,
                                           &workspace_bytes);
    } else {
      status = phi::dynload::get_workspace_size_double(
          cpu_label_lengths,
          cpu_input_lengths,
          static_cast<int>(sequence_width),
          static_cast<int>(num_sequences),
          options_,
          &workspace_bytes);
    }
    PADDLE_ENFORCE_EQ(
        CTC_STATUS_SUCCESS,
        status,
        errors::PreconditionNotMet(
            "warp-ctc [version %d] Error in get_workspace_size: %s",
            warpctc_version_,
            phi::dynload::ctcGetStatusString(status)));
    PADDLE_ENFORCE_GT(
        workspace_bytes,
        0UL,
        errors::InvalidArgument(
            "Bytes of workspace got by warp-ctc function, "
            "get_workspace_size() should be larger than 0, but received %d",
            workspace_bytes));

    size_t workspace_elements = workspace_bytes / sizeof(T) + 1UL;
    DenseTensor workspace = phi::Empty<T, Context>(
        dev_ctx, {static_cast<int64_t>(workspace_elements)});
    T* workspace_data = workspace.data<T>();
    phi::funcs::SetConstant<Context, T>()(
        dev_ctx, &workspace, static_cast<T>(0));

    // compute loss and gradient
    status =
        ComputeCtcLossFunctor<Context, T>()(input,
                                            gradient,
                                            cpu_labels,
                                            cpu_label_lengths,
                                            cpu_input_lengths,
                                            static_cast<int>(sequence_width),
                                            static_cast<int>(num_sequences),
                                            cpu_loss,
                                            workspace_data,
                                            options_);

    PADDLE_ENFORCE_EQ(
        CTC_STATUS_SUCCESS,
        status,
        errors::PreconditionNotMet(
            "warp-ctc [version %d] Error in get_workspace_size: %s",
            warpctc_version_,
            phi::dynload::ctcGetStatusString(status)));
  }

 protected:
  void init(const Context& dev_ctx, const size_t blank) {
    warpctc_version_ = phi::dynload::get_warpctc_version();

207
    if (dev_ctx.GetPlace().GetType() == phi::AllocationType::GPU) {
0
0x45f 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      options_.loc = CTC_GPU;
      options_.stream =
          reinterpret_cast<const phi::GPUContext&>(dev_ctx).stream();
#else
      PADDLE_THROW(
          errors::PreconditionNotMet("[warpctc init] GPU is not enabled."));
#endif
    } else {
      options_.loc = CTC_CPU;
      options_.num_threads = 1;
    }

    options_.blank_label = blank;
  }

 private:
  int warpctc_version_;
  ctcOptions options_;
};

template <typename T, typename Context>
void WarpctcKernel(const Context& dev_ctx,
                   const DenseTensor& logits,
                   const DenseTensor& label,
233 234
                   const paddle::optional<DenseTensor>& logits_length,
                   const paddle::optional<DenseTensor>& labels_length,
0
0x45f 已提交
235
                   int blank,
G
Galaxy1458 已提交
236
                   bool norm_by_times UNUSED,
Z
Zhong Hui 已提交
237 238
                   DenseTensor* loss,
                   DenseTensor* warpctcgrad) {
0
0x45f 已提交
239
  size_t num_sequences, sequence_width, max_sequence_length;
H
Huang Jiyi 已提交
240 241
  phi::Vector<size_t> logits_lod;
  phi::Vector<size_t> label_lod;
0
0x45f 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  if (logits_length.is_initialized() && labels_length.is_initialized()) {
    num_sequences = logits.dims()[1];
    sequence_width = logits.dims()[2];
    max_sequence_length = logits.dims()[0];

    PADDLE_ENFORCE_GT(max_sequence_length,
                      0,
                      phi::errors::InvalidArgument(
                          "The first dimension of Input(Logits) should be "
                          "greater than zero "
                          "but received %d. ",
                          max_sequence_length));

    PADDLE_ENFORCE_GT(num_sequences,
                      0,
                      phi::errors::InvalidArgument(
                          "The second dimension of Input(Logits) should be "
                          "greater than zero "
                          "but received %d. ",
                          num_sequences));

    PADDLE_ENFORCE_GT(sequence_width,
                      0,
                      phi::errors::InvalidArgument(
                          "The third dimension of Input(Logits) should be "
                          "greater than zero "
                          "but received %d. ",
                          sequence_width));

    DenseTensor logits_length_cpu;
    DenseTensor labels_length_cpu;
    phi::Copy(
        dev_ctx, *logits_length, phi::CPUPlace(), false, &logits_length_cpu);
    phi::Copy(
        dev_ctx, *labels_length, phi::CPUPlace(), false, &labels_length_cpu);

    logits_lod.push_back(0);
    label_lod.push_back(0);
    for (size_t i = 0; i < num_sequences; i++) {
      logits_lod.push_back(logits_lod[i] +
                           logits_length_cpu.data<int64_t>()[i]);
      label_lod.push_back(label_lod[i] + labels_length_cpu.data<int64_t>()[i]);
    }
  } else {
    PADDLE_ENFORCE_GT(
        logits.NumLevels(),
        0UL,
        phi::errors::InvalidArgument("Input(Logits) Tensor of WarpCTC "
                                     "does not contain LoD information."));
    PADDLE_ENFORCE_GT(
        label.NumLevels(),
        0UL,
        phi::errors::InvalidArgument("Input(Label) Tensor of WarpCTC "
                                     "does not contain LoD information."));

297
    logits_lod = phi::ToAbsOffset(logits.lod())[0];
0
0x45f 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    auto logits_dims = logits.dims();

    PADDLE_ENFORCE_GT(logits_dims[0],
                      0,
                      phi::errors::InvalidArgument(
                          "The first dimension of Input(Logits) should be "
                          "greater than zero "
                          "but received %d. ",
                          logits_dims[0]));

    PADDLE_ENFORCE_EQ(
        logits_dims[0],
        static_cast<int64_t>(logits_lod.back()),
        phi::errors::InvalidArgument(
            "The first dimension of Input(Logits) should be equal to "
            "the sum of all sequences' lengths = %d., but received %d. ",
            static_cast<int64_t>(logits_lod.back()),
            logits_dims[0]));

317
    label_lod = phi::ToAbsOffset(label.lod())[0];
0
0x45f 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    auto label_dims = label.dims();
    PADDLE_ENFORCE_EQ(label_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dimension of Input(Label) should be 1, "
                          "but received %d",
                          label_dims[1]));

    num_sequences = logits_lod.size() - 1;
    PADDLE_ENFORCE_EQ(num_sequences,
                      label_lod.size() - 1,
                      phi::errors::InvalidArgument(
                          "The number of sequences of Input(Logits) should be "
                          "equal to that of Input(Label) = %d, but received %d",
                          label_lod.size() - 1,
                          num_sequences));

    sequence_width = logits.numel() / logits_dims[0];
336
    max_sequence_length = phi::funcs::MaximumSequenceLength(logits_lod);
0
0x45f 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
  }

  auto loss_dims = phi::make_ddim({static_cast<int64_t>(num_sequences), 1});

  // warpctc needs sequences data stored in transposed padding format
  DenseTensor warpctc_logits_tmp =
      phi::Empty<T, Context>(dev_ctx,
                             {static_cast<int64_t>(max_sequence_length),
                              static_cast<int64_t>(num_sequences),
                              static_cast<int64_t>(sequence_width)});
  DenseTensor warpctc_logits(warpctc_logits_tmp);

  if (logits_length.is_initialized()) {
    phi::Copy(dev_ctx, logits, dev_ctx.GetPlace(), true, &warpctc_logits);
  } else {
    DenseTensor cpu_pad_value;
    cpu_pad_value.Resize({1});
    T* pad_value_data = dev_ctx.template HostAlloc<T>(&cpu_pad_value);
    *pad_value_data = static_cast<T>(0);
    DenseTensor pad_value;
    if (dev_ctx.GetPlace() == phi::CPUPlace()) {
      pad_value = cpu_pad_value;
    } else {
      phi::Copy(dev_ctx, cpu_pad_value, dev_ctx.GetPlace(), true, &pad_value);
    }

363
    phi::funcs::PaddingLoDTensorFunctor<Context, T>()(
0
0x45f 已提交
364 365 366 367 368 369 370
        dev_ctx,
        logits,
        &warpctc_logits,
        pad_value,
        -1,
        0,
        false /* norm_by_times */,
371
        phi::funcs::kLengthBatchWidth);
0
0x45f 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385
  }

  const T* warpctc_logits_data = warpctc_logits.data<T>();

  std::vector<int> warpctc_label_lengths(num_sequences);
  std::vector<int> warpctc_logits_lengths(num_sequences);

  for (size_t i = 0; i < num_sequences; ++i) {
    warpctc_label_lengths[i] = label_lod[i + 1] - label_lod[i];
    warpctc_logits_lengths[i] = logits_lod[i + 1] - logits_lod[i];
  }

  // warpctc computes loss and gradient in one call, gradient data also stored
  // in batch format
Z
Zhong Hui 已提交
386 387
  warpctcgrad->Resize(warpctc_logits.dims());
  T* warpctcgrad_data = dev_ctx.template Alloc<T>(warpctcgrad);
0
0x45f 已提交
388 389

  phi::funcs::SetConstant<Context, T>()(
Z
Zhong Hui 已提交
390
      dev_ctx, warpctcgrad, static_cast<T>(0));
0
0x45f 已提交
391 392 393 394 395

  // warpctc accesses labels in CPU memory
  DenseTensor warpctc_label;
  if (logits_length.is_initialized()) {
    warpctc_label.Resize(
396
        {static_cast<int64_t>(phi::funcs::TotalSequenceLength(label_lod)), 1});
0
0x45f 已提交
397
    dev_ctx.template HostAlloc<int>(&warpctc_label);
H
Huang Jiyi 已提交
398
    std::vector<phi::Vector<size_t>> lod;
0
0x45f 已提交
399 400 401 402
    lod.push_back(label_lod);
    warpctc_label.set_lod(lod);

    if (dev_ctx.GetPlace() == phi::CPUPlace()) {
403
      phi::funcs::UnpaddingLoDTensorFunctor<Context, int>()(
0
0x45f 已提交
404 405 406 407 408 409
          dev_ctx,
          label,
          &warpctc_label,
          label.dims()[1] /*pad_seq_len*/,
          0 /*lod_level*/,
          false /*norm_by_times*/,
410
          phi::funcs::kBatchLengthWidth);
0
0x45f 已提交
411 412 413
    } else {
      DenseTensor gpu_label;
      gpu_label.Resize(
414
          {static_cast<int64_t>(phi::funcs::TotalSequenceLength(label_lod)),
0
0x45f 已提交
415 416 417
           1});
      dev_ctx.template Alloc<int>(&gpu_label);
      gpu_label.set_lod(lod);
418
      phi::funcs::UnpaddingLoDTensorFunctor<Context, int>()(
0
0x45f 已提交
419 420 421 422 423 424
          dev_ctx,
          label,
          &gpu_label,
          label.dims()[1] /*pad_seq_len*/,
          0 /*lod_level*/,
          false /*norm_by_times*/,
425
          phi::funcs::kBatchLengthWidth);
0
0x45f 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438
      phi::Copy(dev_ctx, gpu_label, phi::CPUPlace(), true, &warpctc_label);
    }
  } else {
    phi::Copy(dev_ctx, label, phi::CPUPlace(), true, &warpctc_label);
  }

  const int* warpctc_label_data = warpctc_label.data<int>();
  // warpctc stores loss in CPU memory
  DenseTensor warpctc_loss;
  warpctc_loss.Resize(loss_dims);
  T* warpctc_loss_data = dev_ctx.template HostAlloc<T>(&warpctc_loss);
  WarpCTCFunctor<Context, T>()(dev_ctx,
                               warpctc_logits_data,
Z
Zhong Hui 已提交
439
                               warpctcgrad_data,
0
0x45f 已提交
440 441 442 443 444 445 446 447 448 449 450 451
                               warpctc_label_data,
                               warpctc_label_lengths.data(),
                               warpctc_logits_lengths.data(),
                               sequence_width,
                               num_sequences,
                               blank,
                               warpctc_loss_data);
  // Copy the loss back
  phi::Copy(dev_ctx, warpctc_loss, dev_ctx.GetPlace(), false, loss);
}

}  // namespace phi