warpctc_kernel_impl.h 17.1 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <vector>

#include "paddle/fluid/operators/math/sequence_padding.h"
#include "paddle/fluid/operators/math/sequence_scale.h"
#include "paddle/phi/backends/dynload/warpctc.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/utils/optional.h"

namespace phi {

template <typename Context, typename T>
class ComputeCtcLossFunctor {
 public:
  ctcStatus_t operator()(const T* const activations,
                         T* gradients,
                         const int* const flat_labels,
                         const int* const label_lengths,
                         const int* const input_lengths,
                         int alphabet_size,
                         int minibatch,
                         T* costs,
                         void* workspace,
                         ctcOptions options) {
    return CTC_STATUS_EXECUTION_FAILED;
  }
};

template <typename Context>
class ComputeCtcLossFunctor<Context, float> {
 public:
  ctcStatus_t operator()(const float* const activations,
                         float* gradients,
                         const int* const flat_labels,
                         const int* const label_lengths,
                         const int* const input_lengths,
                         int alphabet_size,
                         int minibatch,
                         float* costs,
                         void* workspace,
                         ctcOptions options) {
    return phi::dynload::compute_ctc_loss(activations,
                                          gradients,
                                          flat_labels,
                                          label_lengths,
                                          input_lengths,
                                          static_cast<int>(alphabet_size),
                                          static_cast<int>(minibatch),
                                          costs,
                                          workspace,
                                          options);
  }
};

template <typename Context>
class ComputeCtcLossFunctor<Context, double> {
 public:
  ctcStatus_t operator()(const double* const activations,
                         double* gradients,
                         const int* const flat_labels,
                         const int* const label_lengths,
                         const int* const input_lengths,
                         int alphabet_size,
                         int minibatch,
                         double* costs,
                         void* workspace,
                         ctcOptions options) {
    return phi::dynload::compute_ctc_loss_double(
        activations,
        gradients,
        flat_labels,
        label_lengths,
        input_lengths,
        static_cast<int>(alphabet_size),
        static_cast<int>(minibatch),
        costs,
        workspace,
        options);
  }
};

template <typename Context, typename T>
class WarpCTCFunctor {
 public:
  /*
   * \brief Compute the connectionist temporal classification loss,
   *        and optionally compute the gradient with respect to the inputs.
   *
   * If gradient is nullptr, it only computes the ctc loss,
   * or computes both ctc loss and gradient.
   *
   * \param ctx               execution context of this functor
   * \param input             batch matrix of input probabilities, in
   *                          max_sequence_length x num_sequences x
   *                          sequence_width, (row-major) format
   * \param gradient          batch matrix of gradient, with the same shape as
   *                          input.
   * \param cpu_labels        labels always in CPU memory.
   * \param cpu_label_lengths length of all labels in CPU memory.
   * \param cpu_input_lengths length of all sequences in CPU memory.
   * \param sequence_width    number of possible output symbols.
   * \param num_sequences     number of sequence.
   * \param blank             blank label used in ctc loss function.
   * \param cpu_losss         cost of each sequence in CPU memory.
   */
  void operator()(const Context& dev_ctx,
                  const T* input,
                  T* gradient,
                  const int* cpu_labels,
                  const int* cpu_label_lengths,
                  const int* cpu_input_lengths,
                  const size_t sequence_width,
                  const size_t num_sequences,
                  const size_t blank,
                  T* cpu_loss) {
    // Init warp-ctc options
    init(dev_ctx, blank);

    // Compute the required workspace size.
    // There is no memory allocated operations within warp-ctc.
    size_t workspace_bytes = 0;
    ctcStatus_t status = CTC_STATUS_UNKNOWN_ERROR;
    if (sizeof(T) == 4) {
      status =
          phi::dynload::get_workspace_size(cpu_label_lengths,
                                           cpu_input_lengths,
                                           static_cast<int>(sequence_width),
                                           static_cast<int>(num_sequences),
                                           options_,
                                           &workspace_bytes);
    } else {
      status = phi::dynload::get_workspace_size_double(
          cpu_label_lengths,
          cpu_input_lengths,
          static_cast<int>(sequence_width),
          static_cast<int>(num_sequences),
          options_,
          &workspace_bytes);
    }
    PADDLE_ENFORCE_EQ(
        CTC_STATUS_SUCCESS,
        status,
        errors::PreconditionNotMet(
            "warp-ctc [version %d] Error in get_workspace_size: %s",
            warpctc_version_,
            phi::dynload::ctcGetStatusString(status)));
    PADDLE_ENFORCE_GT(
        workspace_bytes,
        0UL,
        errors::InvalidArgument(
            "Bytes of workspace got by warp-ctc function, "
            "get_workspace_size() should be larger than 0, but received %d",
            workspace_bytes));

    size_t workspace_elements = workspace_bytes / sizeof(T) + 1UL;
    DenseTensor workspace = phi::Empty<T, Context>(
        dev_ctx, {static_cast<int64_t>(workspace_elements)});
    T* workspace_data = workspace.data<T>();
    phi::funcs::SetConstant<Context, T>()(
        dev_ctx, &workspace, static_cast<T>(0));

    // compute loss and gradient
    status =
        ComputeCtcLossFunctor<Context, T>()(input,
                                            gradient,
                                            cpu_labels,
                                            cpu_label_lengths,
                                            cpu_input_lengths,
                                            static_cast<int>(sequence_width),
                                            static_cast<int>(num_sequences),
                                            cpu_loss,
                                            workspace_data,
                                            options_);

    PADDLE_ENFORCE_EQ(
        CTC_STATUS_SUCCESS,
        status,
        errors::PreconditionNotMet(
            "warp-ctc [version %d] Error in get_workspace_size: %s",
            warpctc_version_,
            phi::dynload::ctcGetStatusString(status)));
  }

 protected:
  void init(const Context& dev_ctx, const size_t blank) {
    warpctc_version_ = phi::dynload::get_warpctc_version();

206
    if (paddle::platform::is_gpu_place(dev_ctx.GetPlace())) {
0
0x45f 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      options_.loc = CTC_GPU;
      options_.stream =
          reinterpret_cast<const phi::GPUContext&>(dev_ctx).stream();
#else
      PADDLE_THROW(
          errors::PreconditionNotMet("[warpctc init] GPU is not enabled."));
#endif
    } else {
      options_.loc = CTC_CPU;
      options_.num_threads = 1;
    }

    options_.blank_label = blank;
  }

 private:
  int warpctc_version_;
  ctcOptions options_;
};

template <typename T, typename Context>
void WarpctcKernel(const Context& dev_ctx,
                   const DenseTensor& logits,
                   const DenseTensor& label,
                   const paddle::optional<const DenseTensor&> logits_length,
                   const paddle::optional<const DenseTensor&> labels_length,
                   int blank,
                   bool norm_by_times,
                   DenseTensor* warpctc_grad,
                   DenseTensor* loss) {
  size_t num_sequences, sequence_width, max_sequence_length;
  paddle::framework::Vector<size_t> logits_lod;
  paddle::framework::Vector<size_t> label_lod;
  if (logits_length.is_initialized() && labels_length.is_initialized()) {
    num_sequences = logits.dims()[1];
    sequence_width = logits.dims()[2];
    max_sequence_length = logits.dims()[0];

    PADDLE_ENFORCE_GT(max_sequence_length,
                      0,
                      phi::errors::InvalidArgument(
                          "The first dimension of Input(Logits) should be "
                          "greater than zero "
                          "but received %d. ",
                          max_sequence_length));

    PADDLE_ENFORCE_GT(num_sequences,
                      0,
                      phi::errors::InvalidArgument(
                          "The second dimension of Input(Logits) should be "
                          "greater than zero "
                          "but received %d. ",
                          num_sequences));

    PADDLE_ENFORCE_GT(sequence_width,
                      0,
                      phi::errors::InvalidArgument(
                          "The third dimension of Input(Logits) should be "
                          "greater than zero "
                          "but received %d. ",
                          sequence_width));

    DenseTensor logits_length_cpu;
    DenseTensor labels_length_cpu;
    phi::Copy(
        dev_ctx, *logits_length, phi::CPUPlace(), false, &logits_length_cpu);
    phi::Copy(
        dev_ctx, *labels_length, phi::CPUPlace(), false, &labels_length_cpu);

    logits_lod.push_back(0);
    label_lod.push_back(0);
    for (size_t i = 0; i < num_sequences; i++) {
      logits_lod.push_back(logits_lod[i] +
                           logits_length_cpu.data<int64_t>()[i]);
      label_lod.push_back(label_lod[i] + labels_length_cpu.data<int64_t>()[i]);
    }
  } else {
    PADDLE_ENFORCE_GT(
        logits.NumLevels(),
        0UL,
        phi::errors::InvalidArgument("Input(Logits) Tensor of WarpCTC "
                                     "does not contain LoD information."));
    PADDLE_ENFORCE_GT(
        label.NumLevels(),
        0UL,
        phi::errors::InvalidArgument("Input(Label) Tensor of WarpCTC "
                                     "does not contain LoD information."));

    logits_lod = paddle::framework::ToAbsOffset(logits.lod())[0];
    auto logits_dims = logits.dims();

    PADDLE_ENFORCE_GT(logits_dims[0],
                      0,
                      phi::errors::InvalidArgument(
                          "The first dimension of Input(Logits) should be "
                          "greater than zero "
                          "but received %d. ",
                          logits_dims[0]));

    PADDLE_ENFORCE_EQ(
        logits_dims[0],
        static_cast<int64_t>(logits_lod.back()),
        phi::errors::InvalidArgument(
            "The first dimension of Input(Logits) should be equal to "
            "the sum of all sequences' lengths = %d., but received %d. ",
            static_cast<int64_t>(logits_lod.back()),
            logits_dims[0]));

    label_lod = paddle::framework::ToAbsOffset(label.lod())[0];
    auto label_dims = label.dims();
    PADDLE_ENFORCE_EQ(label_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dimension of Input(Label) should be 1, "
                          "but received %d",
                          label_dims[1]));

    num_sequences = logits_lod.size() - 1;
    PADDLE_ENFORCE_EQ(num_sequences,
                      label_lod.size() - 1,
                      phi::errors::InvalidArgument(
                          "The number of sequences of Input(Logits) should be "
                          "equal to that of Input(Label) = %d, but received %d",
                          label_lod.size() - 1,
                          num_sequences));

    sequence_width = logits.numel() / logits_dims[0];
    max_sequence_length =
        paddle::operators::math::MaximumSequenceLength(logits_lod);
  }

  auto loss_dims = phi::make_ddim({static_cast<int64_t>(num_sequences), 1});

  // warpctc needs sequences data stored in transposed padding format
  DenseTensor warpctc_logits_tmp =
      phi::Empty<T, Context>(dev_ctx,
                             {static_cast<int64_t>(max_sequence_length),
                              static_cast<int64_t>(num_sequences),
                              static_cast<int64_t>(sequence_width)});
  DenseTensor warpctc_logits(warpctc_logits_tmp);

  if (logits_length.is_initialized()) {
    phi::Copy(dev_ctx, logits, dev_ctx.GetPlace(), true, &warpctc_logits);
  } else {
    DenseTensor cpu_pad_value;
    cpu_pad_value.Resize({1});
    T* pad_value_data = dev_ctx.template HostAlloc<T>(&cpu_pad_value);
    *pad_value_data = static_cast<T>(0);
    DenseTensor pad_value;
    if (dev_ctx.GetPlace() == phi::CPUPlace()) {
      pad_value = cpu_pad_value;
    } else {
      phi::Copy(dev_ctx, cpu_pad_value, dev_ctx.GetPlace(), true, &pad_value);
    }

    paddle::operators::math::PaddingLoDTensorFunctor<Context, T>()(
        dev_ctx,
        logits,
        &warpctc_logits,
        pad_value,
        -1,
        0,
        false /* norm_by_times */,
        paddle::operators::math::kLengthBatchWidth);
  }

  const T* warpctc_logits_data = warpctc_logits.data<T>();

  std::vector<int> warpctc_label_lengths(num_sequences);
  std::vector<int> warpctc_logits_lengths(num_sequences);

  for (size_t i = 0; i < num_sequences; ++i) {
    warpctc_label_lengths[i] = label_lod[i + 1] - label_lod[i];
    warpctc_logits_lengths[i] = logits_lod[i + 1] - logits_lod[i];
  }

  // warpctc computes loss and gradient in one call, gradient data also stored
  // in batch format
  warpctc_grad->Resize(warpctc_logits.dims());
  T* warpctc_grad_data = dev_ctx.template Alloc<T>(warpctc_grad);

  phi::funcs::SetConstant<Context, T>()(
      dev_ctx, warpctc_grad, static_cast<T>(0));

  // warpctc accesses labels in CPU memory
  DenseTensor warpctc_label;
  if (logits_length.is_initialized()) {
    warpctc_label.Resize(
        {static_cast<int64_t>(
             paddle::operators::math::TotalSequenceLength(label_lod)),
         1});
    dev_ctx.template HostAlloc<int>(&warpctc_label);
    std::vector<paddle::framework::Vector<size_t>> lod;
    lod.push_back(label_lod);
    warpctc_label.set_lod(lod);

    if (dev_ctx.GetPlace() == phi::CPUPlace()) {
      paddle::operators::math::UnpaddingLoDTensorFunctor<Context, int>()(
          dev_ctx,
          label,
          &warpctc_label,
          label.dims()[1] /*pad_seq_len*/,
          0 /*lod_level*/,
          false /*norm_by_times*/,
          paddle::operators::math::kBatchLengthWidth);
    } else {
      DenseTensor gpu_label;
      gpu_label.Resize(
          {static_cast<int64_t>(
               paddle::operators::math::TotalSequenceLength(label_lod)),
           1});
      dev_ctx.template Alloc<int>(&gpu_label);
      gpu_label.set_lod(lod);
      paddle::operators::math::UnpaddingLoDTensorFunctor<Context, int>()(
          dev_ctx,
          label,
          &gpu_label,
          label.dims()[1] /*pad_seq_len*/,
          0 /*lod_level*/,
          false /*norm_by_times*/,
          paddle::operators::math::kBatchLengthWidth);
      phi::Copy(dev_ctx, gpu_label, phi::CPUPlace(), true, &warpctc_label);
    }
  } else {
    phi::Copy(dev_ctx, label, phi::CPUPlace(), true, &warpctc_label);
  }

  const int* warpctc_label_data = warpctc_label.data<int>();
  // warpctc stores loss in CPU memory
  DenseTensor warpctc_loss;
  warpctc_loss.Resize(loss_dims);
  T* warpctc_loss_data = dev_ctx.template HostAlloc<T>(&warpctc_loss);
  WarpCTCFunctor<Context, T>()(dev_ctx,
                               warpctc_logits_data,
                               warpctc_grad_data,
                               warpctc_label_data,
                               warpctc_label_lengths.data(),
                               warpctc_logits_lengths.data(),
                               sequence_width,
                               num_sequences,
                               blank,
                               warpctc_loss_data);
  // Copy the loss back
  phi::Copy(dev_ctx, warpctc_loss, dev_ctx.GetPlace(), false, loss);
}

}  // namespace phi