conv_cudnn_helper.h 32.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/conv_base_helper.h"
18
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
20
#include "paddle/phi/kernels/autotune/switch_autotune.h"
21
#include "paddle/phi/kernels/funcs/eigen/common.h"
22
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
23

Q
qingqing01 已提交
24 25 26
namespace paddle {
namespace operators {

27
using ConvArgs = ConvArgsBase<cudnnHandle_t, cudnnDataType_t>;
28 29

template <typename DeviceContext, typename T, size_t D>
H
hong 已提交
30
static void RemovePaddingSlice(const phi::GPUContext& context,
31 32
                               const Tensor* input,
                               Tensor* out,
33 34
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
H
hong 已提交
35
  auto& place = *context.eigen_device();
36 37
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
38 39
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
40 41 42 43 44 45
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  for (size_t i = 0; i < axes.size(); ++i) {
46
    int start = starts[i];
47 48 49 50 51 52
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
53

54
  auto in_t =
55 56 57
      phi::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(*input);
  auto out_t = phi::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
      *out, new_out_dims);
58 59 60

  phi::funcs::EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(
      place, out_t, in_t, offsets, extents);
61 62
}

63 64
static inline double ToMegaBytes(size_t bytes) {
  return static_cast<double>(bytes) / (1 << 20);
65 66
}

67 68
static inline bool UseFixedWorkspace() {
  return FLAGS_conv_workspace_size_limit >= 0;
69 70
}

71 72
static size_t CalcWorkspaceLimitInBytes(bool use_fixed_workspace) {
  if (!use_fixed_workspace) {
73
    int device_id = platform::GetCurrentDeviceId();
74 75 76 77
    int64_t allocated =
        memory::DeviceMemoryStatCurrentValue("Allocated", device_id);
    int64_t reserved =
        memory::DeviceMemoryStatCurrentValue("Reserved", device_id);
78 79 80
    int64_t availble = platform::GpuAvailableMemToAlloc();
    VLOG(3) << "[memory] allocated=" << ToMegaBytes(allocated)
            << " MB, reserved=" << ToMegaBytes(reserved)
81 82
            << " MB, available_to_alloc=" << ToMegaBytes(availble) << " MB.";
    return std::max(availble, reserved - allocated);
83 84
  } else {
    return FLAGS_conv_workspace_size_limit * 1024 * 1024;
85 86 87
  }
}

88 89 90
template <typename PerfT>
std::string GetPerfResultString(std::string prefix,
                                const std::vector<PerfT>& perf_results,
91 92
                                int actual_algo_count,
                                size_t workspace_limit) {
93 94 95 96 97 98 99 100 101 102
  std::ostringstream out;
  out << prefix << " (workspace limit=" << ToMegaBytes(workspace_limit)
      << " MB):\n";
  for (int i = 0; i < actual_algo_count; ++i) {
    const auto& result = perf_results[i];
    auto math_type_str = (result.mathType == CUDNN_TENSOR_OP_MATH) ? "T" : "F";
    out << "  algo=" << result.algo << ": tensor_core=" << math_type_str
        << ", time=" << result.time
        << " ms, memory=" << ToMegaBytes(result.memory)
        << " MB, status=" << result.status << "\n";
103
  }
104 105
  return out.str();
}
106

107 108
// Choose an algorithm which has the minimize time cost and less memory.
// NOTE: perf_results is ordered by time.
109 110 111
template <typename PerfT, typename AlgoT>
void ChooseAlgoByWorkspace(const std::vector<PerfT>& perf_results,
                           size_t workspace_limit,
112 113
                           SearchResult<AlgoT>* search_result) {
  int best_algo_idx = -1;
114 115
  for (size_t i = 0; i < perf_results.size(); ++i) {
    auto result = perf_results[i];
116
    if (result.status == CUDNN_STATUS_SUCCESS &&
117
        result.memory < workspace_limit) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
      if (best_algo_idx == -1) {
        // The algorithm which has minimize time cost and need a workspace_size
        // fitting the workspace_limit constraint.
        best_algo_idx = i;
        // Each perf_results[i].time is set to be -1 in heuristic search.
        if (perf_results[best_algo_idx].time < 0) {
          break;
        }
      } else {
        float best_algo_time = perf_results[best_algo_idx].time;
        if ((result.time - best_algo_time) / best_algo_time < 0.01) {
          best_algo_idx = (result.memory < perf_results[best_algo_idx].memory)
                              ? i
                              : best_algo_idx;
          break;
        }
      }
135 136
    }
  }
137 138 139 140 141 142 143 144
  if (best_algo_idx != -1) {
    search_result->algo = perf_results[best_algo_idx].algo;
    search_result->time = perf_results[best_algo_idx].time;
    search_result->workspace_size = perf_results[best_algo_idx].memory;
  } else {
    VLOG(3) << "Can not find an algorithm that requires memory < "
            << ToMegaBytes(workspace_limit) << " MB";
  }
145 146
}

147 148
template <typename PerfT>
struct SearchAlgorithmBase {};
149

150 151 152 153
// cuDNN convolution forward algorithm searcher, consisted of three searching
// modes, namely: deterministic, heuristic and exhaustive_search mode.
// As well as one workspace size acquirsition function with respect to
// the chosen alogrithm.
Q
qingqing01 已提交
154
template <>
155
struct SearchAlgorithmBase<cudnnConvolutionFwdAlgoPerf_t> {
156 157
  using PerfT = cudnnConvolutionFwdAlgoPerf_t;
  using AlgoT = cudnnConvolutionFwdAlgo_t;
158 159
  constexpr static phi::autotune::AlgorithmType kAlgoType =
      phi::autotune::AlgorithmType::kConvForward;
Q
qingqing01 已提交
160

161
  static const std::string GetPerfName() { return "ConvForward"; }
Q
qingqing01 已提交
162

163 164
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionFwdAlgo_t algo) {
Q
qingqing01 已提交
165
    size_t workspace_size = 0;
166
    PADDLE_ENFORCE_GPU_SUCCESS(
167
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
168 169 170 171 172 173 174
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
175 176
    return workspace_size;
  }
177

178
 protected:
H
hong 已提交
179 180 181
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size = GetWorkspaceSize(args, static_cast<AlgoT>(1));
    return SearchResult<AlgoT>(static_cast<AlgoT>(1), -1.0, workspace_size);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  }

  // Heuristic search mode, calling the cudnnGetXxxAlgorithm.
  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
197 198 199 200 201 202 203 204
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            kNUM_CUDNN_FWD_ALGS,
            &actual_perf_count,
            perf_results.data()));
205 206 207 208 209
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
210 211 212 213
      VLOG(4) << GetPerfResultString<PerfT>("[Heuristic] FwdAlgo Perf result",
                                            perf_results,
                                            actual_perf_count,
                                            workspace_size_limit);
214
      // cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
215 216
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
217 218 219 220 221 222 223
#else
      VLOG(3) << "Fallback to non-v7 method to find conv algorithm "
                 "becasue the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
224 225 226 227 228
              args.handle,
              args.idesc.desc(),
              args.wdesc.desc(),
              args.cdesc.desc(),
              args.odesc.desc(),
229
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
230 231
              workspace_size_limit,
              &(result.algo)));
232 233 234 235 236
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm(
237 238 239 240 241 242 243
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
            workspace_size_limit,
244 245
            &(result.algo)));
#endif
H
hong 已提交
246
    result.workspace_size = GetWorkspaceSize(args, result.algo);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(4) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
265 266 267 268 269 270 271 272 273 274 275 276 277
              args.handle,
              args.idesc.desc(),
              args.x->data<T>(),
              args.wdesc.desc(),
              args.w->data<T>(),
              args.cdesc.desc(),
              args.odesc.desc(),
              const_cast<T*>(args.o->data<T>()),
              kNUM_CUDNN_FWD_ALGS,
              &returned_algo_count,
              perf_results.data(),
              workspace_ptr,
              max_workspace_size));
278 279 280
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
281 282
    workspace_handle.RunFuncSync(
        cudnn_find_func, max_workspace_size, UseFixedWorkspace());
283 284

    VLOG(4) << GetPerfResultString<PerfT>(
285 286 287 288 289 290
        "[Exhaustive Search] FwdAlgo Perf result",
        perf_results,
        returned_algo_count,
        workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(
        perf_results, workspace_size_limit, &result);
291

H
hong 已提交
292
    result.workspace_size = GetWorkspaceSize(args, result.algo);
293 294 295 296 297
    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
298 299 300 301 302 303
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_FWD_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
304 305 306 307 308 309 310
                args.handle,
                args.idesc.desc(),
                args.wdesc.desc(),
                args.cdesc.desc(),
                args.odesc.desc(),
                static_cast<cudnnConvolutionFwdAlgo_t>(algo),
                &workspace_size);
311 312
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
313 314 315
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
316
      return max_workspace_size;
317 318 319 320
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
321 322
};

323 324 325 326 327 328
// cuDNN convolution backward data-algorithm searcher, consisting of three
// searching modes, namely: deterministic, heuristic, and exhaustive_search
// mode. Specially, there are 2 pattens of exhaustive search mode, one for
// HALF precision only, one for the rest.
// As well as one workspace size acquirsition function with
// respect to the chosen alogrithm.
Q
qingqing01 已提交
329
template <>
330
struct SearchAlgorithmBase<cudnnConvolutionBwdDataAlgoPerf_t> {
331 332
  using PerfT = cudnnConvolutionBwdDataAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdDataAlgo_t;
333 334
  constexpr static phi::autotune::AlgorithmType kAlgoType =
      phi::autotune::AlgorithmType::kConvBackwardData;
Q
qingqing01 已提交
335

336
  static const std::string GetPerfName() { return "ConvBackwardData"; }
Q
qingqing01 已提交
337

338 339
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdDataAlgo_t algo) {
Q
qingqing01 已提交
340
    size_t workspace_size = 0;
341
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
342
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
343 344 345 346 347 348 349
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
350 351
    return workspace_size;
  }
352

353
 protected:
H
hong 已提交
354 355 356 357 358
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size =
        GetWorkspaceSize(args, CUDNN_CONVOLUTION_BWD_DATA_ALGO_1);
    return SearchResult<AlgoT>(
        CUDNN_CONVOLUTION_BWD_DATA_ALGO_1, -1.0, workspace_size);
359 360 361 362 363 364 365 366 367 368 369 370 371 372
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
373 374 375 376 377 378 379 380
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            kNUM_CUDNN_BWD_DATA_ALGS,
            &actual_perf_count,
            perf_results.data()));
381 382 383 384
    result.algo = perf_results[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
    int stride_dim = args.x->dims().size() - 2;
385 386
    bool blacklist = std::any_of(args.s.begin(),
                                 args.s.begin() + stride_dim,
387 388 389 390 391 392 393 394 395 396 397 398
                                 [=](int n) { return n != 1; });
    if (blacklist && (perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                      perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
      result.algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    }
#endif
    result.workspace_size = GetWorkspaceSize(args, result.algo);
    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
399 400
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
401 402 403 404 405 406 407
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
408 409 410 411 412
              args.handle,
              args.wdesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.idesc.desc(),
413
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
414 415
              workspace_size_limit,
              &(result.algo)));
416 417 418 419 420
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
421 422 423 424 425
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
426
            CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
427 428
            workspace_size_limit,
            &(result.algo)));
429
#endif
H
hong 已提交
430
    result.workspace_size = GetWorkspaceSize(args, result.algo);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardDataAlgorithmEx(
449 450 451 452 453 454 455 456 457 458 459 460 461
              args.handle,
              args.wdesc.desc(),
              args.w->data<T>(),
              args.odesc.desc(),
              args.o->data<T>(),
              args.cdesc.desc(),
              args.idesc.desc(),
              const_cast<T*>(args.x->data<T>()),
              kNUM_CUDNN_BWD_DATA_ALGS,
              &returned_algo_count,
              perf_results.data(),
              workspace_ptr,
              max_workspace_size));
462 463 464
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
465 466
    workspace_handle.RunFuncSync(
        cudnn_find_func, max_workspace_size, UseFixedWorkspace());
467 468

    VLOG(4) << GetPerfResultString<PerfT>(
469 470 471 472 473 474
        "[Exhaustive Search] BwdDataAlgo Perf result",
        perf_results,
        returned_algo_count,
        workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(
        perf_results, workspace_size_limit, &result);
475

H
hong 已提交
476
    result.workspace_size = GetWorkspaceSize(args, result.algo);
477 478 479 480 481
    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
482 483 484 485 486 487
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_DATA_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
488 489 490 491 492
                args.handle,
                args.wdesc.desc(),
                args.odesc.desc(),
                args.cdesc.desc(),
                args.idesc.desc(),
493 494
                static_cast<cudnnConvolutionBwdDataAlgo_t>(algo),
                &workspace_size);
495 496
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
497 498 499
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
500
      return max_workspace_size;
501 502 503 504
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
505 506
};

507 508 509 510
// cuDNN convution backward filter-algorithm searcher, consisted of three
// algorithm searching modes, namely: deterministic, heuristic, and
// exhaustive_search mode. As well as one workspace size acquirsition function
// with respect to the chosen alogrithm.
Q
qingqing01 已提交
511
template <>
512
struct SearchAlgorithmBase<cudnnConvolutionBwdFilterAlgoPerf_t> {
513 514
  using PerfT = cudnnConvolutionBwdFilterAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdFilterAlgo_t;
515 516
  constexpr static phi::autotune::AlgorithmType kAlgoType =
      phi::autotune::AlgorithmType::kConvBackwardFilter;
Q
qingqing01 已提交
517

518
  static const std::string GetPerfName() { return "ConvBackwardFilter"; }
Q
qingqing01 已提交
519

520 521
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdFilterAlgo_t algo) {
522
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
523
    size_t workspace_size = 0;
524
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
525
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
526 527 528 529 530 531 532
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
533 534
    return workspace_size;
  }
535

536
 protected:
H
hong 已提交
537 538 539 540 541
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size =
        GetWorkspaceSize(args, CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1);
    return SearchResult<AlgoT>(
        CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, -1.0, workspace_size);
542 543 544 545 546 547 548 549 550 551 552 553 554 555
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
556 557 558 559 560 561 562 563
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            kNUM_CUDNN_BWD_FILTER_ALGS,
            &actual_perf_count,
            perf_results.data()));
564 565 566 567 568 569
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
570 571
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
572 573 574 575 576 577 578
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
579 580 581 582 583
              args.handle,
              args.idesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.wdesc.desc(),
584
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
585 586
              workspace_size_limit,
              &(result.algo)));
587 588 589 590 591
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
592 593 594 595 596
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
597
            CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
598 599
            workspace_size_limit,
            &(result.algo)));
600 601
#endif

H
hong 已提交
602
    result.workspace_size = GetWorkspaceSize(args, result.algo);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    int returned_algo_count = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    auto workspace_handle = ctx.cudnn_workspace_handle();
    if (platform::CudnnDataType<T>::type != CUDNN_DATA_HALF) {
      size_t max_workspace_size =
          GetMaxWorkspaceSize(args, workspace_size_limit);
      VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
              << " MB";

      auto cudnn_find_func = [&](void* workspace_ptr) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithmEx(
624 625 626 627 628 629 630 631 632 633 634 635 636
                args.handle,
                args.idesc.desc(),
                args.x->data<T>(),
                args.odesc.desc(),
                args.o->data<T>(),
                args.cdesc.desc(),
                args.wdesc.desc(),
                const_cast<T*>(args.w->data<T>()),
                kNUM_CUDNN_BWD_FILTER_ALGS,
                &returned_algo_count,
                perf_results.data(),
                workspace_ptr,
                max_workspace_size));
637
      };
638 639
      workspace_handle.RunFuncSync(
          cudnn_find_func, max_workspace_size, UseFixedWorkspace());
640 641

      VLOG(4) << GetPerfResultString<PerfT>(
642 643 644 645 646 647
          "[Exhaustive Search] BwdFilterAlgo Perf result",
          perf_results,
          returned_algo_count,
          workspace_size_limit);
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
648 649 650 651 652
    } else {
      int max_algos = GetAlgorithmMaxCount(args.handle);
      std::vector<PerfT> perf_results(max_algos);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithm(
653 654 655 656 657 658 659 660
              args.handle,
              args.idesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.wdesc.desc(),
              perf_results.size(),
              &returned_algo_count,
              perf_results.data()));
661 662 663
      perf_results.resize(returned_algo_count);

      VLOG(4) << GetPerfResultString<PerfT>(
664 665 666 667
          "[Exhaustive Search] BwdFilterAlgo Perf result",
          perf_results,
          perf_results.size(),
          workspace_size_limit);
668 669 670
      ChooseAlgo(perf_results, workspace_size_limit, &result);
    }

H
hong 已提交
671
    result.workspace_size = GetWorkspaceSize(args, result.algo);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    return result;
  }

  static int GetAlgorithmMaxCount(cudnnHandle_t handle) {
#if CUDNN_VERSION_MIN(7, 0, 1)
    int max_algos = 0;
    auto status =
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
            handle, &max_algos);
    if (status == gpuSuccess) {
      VLOG(5) << "[BackwardFilter] max_algos: predefined="
              << kNUM_CUDNN_BWD_FILTER_ALGS << ", actual=" << max_algos;
      return max_algos;
    }
#endif
    return kNUM_CUDNN_BWD_FILTER_ALGS;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
692 693 694 695 696 697
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_FILTER_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
698 699 700 701 702
                args.handle,
                args.idesc.desc(),
                args.odesc.desc(),
                args.cdesc.desc(),
                args.wdesc.desc(),
703 704
                static_cast<cudnnConvolutionBwdFilterAlgo_t>(algo),
                &workspace_size);
705 706
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
707 708 709
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
710
      return max_workspace_size;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    } else {
      return workspace_size_limit;
    }
  }

  static void ChooseAlgo(const std::vector<PerfT>& perf_results,
                         size_t workspace_limit,
                         SearchResult<AlgoT>* algo_result) {
    for (size_t i = 0; i != perf_results.size(); ++i) {
      const auto& result = perf_results[i];
      if (result.status == CUDNN_STATUS_SUCCESS &&
          (result.memory <= workspace_limit)) {
        if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
            (i != perf_results.size() - 1)) {
          const auto& next_result = perf_results[i + 1];
          if (next_result.status == CUDNN_STATUS_SUCCESS &&
              next_result.algo == result.algo &&
              next_result.memory == result.memory &&
              next_result.mathType != CUDNN_TENSOR_OP_MATH &&
              next_result.time < 1.01 * result.time) {
            // Skip over this result- it's not really a Tensor Core algo.
            // Because it is only 1% performance difference.
            // Prefer to choose the next equivalent non-Tensor Core algo.
            continue;
          }
        }
        algo_result->algo = result.algo;
        algo_result->time = result.time;
        auto math_type_str = "0";
        if (result.mathType == CUDNN_TENSOR_OP_MATH) {
          math_type_str = "1";
        }
        VLOG(3) << "    choose algo: " << result.algo
                << ", TC: " << math_type_str << ", time: " << result.time
                << " ms, wksp = " << result.memory
                << ", status = " << result.status;
        break;
      }
    }
  }
Q
qingqing01 已提交
751 752
};

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
template <typename PerfT>
struct SearchAlgorithm : public SearchAlgorithmBase<PerfT> {
  using AlgoT = typename SearchAlgorithmBase<PerfT>::AlgoT;

  template <typename T>
  static SearchResult<AlgoT> Find(const phi::GPUContext& ctx,
                                  const ConvArgs& args,
                                  bool exhaustive_search,
                                  bool deterministic,
                                  bool enable_autotune = true) {
    SearchResult<AlgoT> result;
    bool use_autotune = false;
    auto dtype = platform::CudnnDataType<T>::type;
    SetConvMathType(ctx, dtype, args.cdesc);

    if (deterministic) {
      result = SearchAlgorithmBase<PerfT>::FindAlgoDeterministic(args);
    } else {
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, run heuristic (default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      //    Auto tune is only enabled between specified range.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
      auto key = args.Convert2ConvCacheKey<T>();
      auto& cache = phi::autotune::AutoTuneCache::Instance().GetConv(
          SearchAlgorithmBase<PerfT>::kAlgoType);
      bool find_in_cache = cache.Find(key);
      if (find_in_cache) {
        auto t = cache.Get(key);
        result.algo = static_cast<AlgoT>(t.algo);
        result.workspace_size = t.workspace_size;
        result.exhaustive_search = t.exhaustive_search;
      }
      if (!result.exhaustive_search) {
        bool need_update_cache = false;
        // In conv2d_tranpose, enable_autotune is set to false because some
        // algorithm picked by exhaustive search method produce wrong result.
        use_autotune = enable_autotune &&
                       phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          // Once autotune is enabled, the autotuned result can rewrite the
          // previous result in cache found by heuristic method.
          result =
              SearchAlgorithmBase<PerfT>::template FindAlgoExhaustiveSearch<T>(
                  args, ctx);
          need_update_cache = true;
        } else if (!find_in_cache) {
          result = SearchAlgorithmBase<PerfT>::FindAlgoHeuristic(args, ctx);
          need_update_cache = true;
        }
        if (need_update_cache) {
          phi::autotune::ConvAutoTuneResult node(
              static_cast<int64_t>(result.algo),
              result.workspace_size,
              exhaustive_search || use_autotune);
          cache.Set(key, node);
        }
      }
    }
    VLOG(3) << "[cuDNN " << SearchAlgorithmBase<PerfT>::GetPerfName()
            << "] exhaustive_search=" << exhaustive_search
            << ", use_autotune=" << use_autotune
            << ", deterministic=" << deterministic
            << ", choose algo=" << result.algo
            << ", workspace=" << ToMegaBytes(result.workspace_size) << " MB";
    return result;
  }

  static void SetConvMathType(const phi::GPUContext& ctx,
                              cudnnDataType_t dtype,
                              const platform::ConvolutionDescriptor& cdesc) {
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    if (ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "Enable Tensor Core for FLOAT16";
#if CUDA_VERSION >= 11000
#if CUDNN_VERSION_MIN(8, 1, 0)
    } else if (ctx.GetComputeCapability() >= 80 &&
               dtype == CUDNN_DATA_BFLOAT16) {
      VLOG(5) << "Enable Tensor Core for BFLOAT16";
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_TENSOR_OP_MATH));
#endif  // CUDNN_VERSION_MIN(8, 1, 0)
    } else if (dtype == CUDNN_DATA_FLOAT && !cdesc.allow_tf32_) {
      VLOG(5) << "Disable TensorFloat (Tensor Core) for FLOAT";
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
    } else {
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_DEFAULT_MATH));
    }
#endif
  }
};

Q
qingqing01 已提交
851 852
}  // namespace operators
}  // namespace paddle