conv_cudnn_helper.h 31.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/conv_base_helper.h"
18
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
20 21
#include "paddle/fluid/platform/profiler.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
22
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
23

Q
qingqing01 已提交
24 25 26
namespace paddle {
namespace operators {

27
using ConvArgs = ConvArgsBase<cudnnHandle_t, cudnnDataType_t>;
28 29

template <typename DeviceContext, typename T, size_t D>
H
hong 已提交
30
static void RemovePaddingSlice(const phi::GPUContext& context,
31 32 33
                               const Tensor* input, Tensor* out,
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
H
hong 已提交
34
  auto& place = *context.eigen_device();
35 36
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
37 38
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
39 40 41 42 43 44
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  for (size_t i = 0; i < axes.size(); ++i) {
45
    int start = starts[i];
46 47 48 49 50 51
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
52

53 54 55 56 57 58
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
59 60 61

  phi::funcs::EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(
      place, out_t, in_t, offsets, extents);
62 63
}

64 65
static inline double ToMegaBytes(size_t bytes) {
  return static_cast<double>(bytes) / (1 << 20);
66 67
}

68 69
static inline bool UseFixedWorkspace() {
  return FLAGS_conv_workspace_size_limit >= 0;
70 71
}

72 73
static size_t CalcWorkspaceLimitInBytes(bool use_fixed_workspace) {
  if (!use_fixed_workspace) {
74
    int device_id = platform::GetCurrentDeviceId();
75 76 77 78
    int64_t allocated =
        memory::DeviceMemoryStatCurrentValue("Allocated", device_id);
    int64_t reserved =
        memory::DeviceMemoryStatCurrentValue("Reserved", device_id);
79 80 81
    int64_t availble = platform::GpuAvailableMemToAlloc();
    VLOG(3) << "[memory] allocated=" << ToMegaBytes(allocated)
            << " MB, reserved=" << ToMegaBytes(reserved)
82 83
            << " MB, available_to_alloc=" << ToMegaBytes(availble) << " MB.";
    return std::max(availble, reserved - allocated);
84 85
  } else {
    return FLAGS_conv_workspace_size_limit * 1024 * 1024;
86 87 88
  }
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102
template <typename PerfT>
std::string GetPerfResultString(std::string prefix,
                                const std::vector<PerfT>& perf_results,
                                int actual_algo_count, size_t workspace_limit) {
  std::ostringstream out;
  out << prefix << " (workspace limit=" << ToMegaBytes(workspace_limit)
      << " MB):\n";
  for (int i = 0; i < actual_algo_count; ++i) {
    const auto& result = perf_results[i];
    auto math_type_str = (result.mathType == CUDNN_TENSOR_OP_MATH) ? "T" : "F";
    out << "  algo=" << result.algo << ": tensor_core=" << math_type_str
        << ", time=" << result.time
        << " ms, memory=" << ToMegaBytes(result.memory)
        << " MB, status=" << result.status << "\n";
103
  }
104 105
  return out.str();
}
106

107 108
// Choose an algorithm which has the minimize time cost and less memory.
// NOTE: perf_results is ordered by time.
109 110 111
template <typename PerfT, typename AlgoT>
void ChooseAlgoByWorkspace(const std::vector<PerfT>& perf_results,
                           size_t workspace_limit,
112 113
                           SearchResult<AlgoT>* search_result) {
  int best_algo_idx = -1;
114 115
  for (size_t i = 0; i < perf_results.size(); ++i) {
    auto result = perf_results[i];
116
    if (result.status == CUDNN_STATUS_SUCCESS &&
117
        result.memory < workspace_limit) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
      if (best_algo_idx == -1) {
        // The algorithm which has minimize time cost and need a workspace_size
        // fitting the workspace_limit constraint.
        best_algo_idx = i;
        // Each perf_results[i].time is set to be -1 in heuristic search.
        if (perf_results[best_algo_idx].time < 0) {
          break;
        }
      } else {
        float best_algo_time = perf_results[best_algo_idx].time;
        if ((result.time - best_algo_time) / best_algo_time < 0.01) {
          best_algo_idx = (result.memory < perf_results[best_algo_idx].memory)
                              ? i
                              : best_algo_idx;
          break;
        }
      }
135 136
    }
  }
137 138 139 140 141 142 143 144
  if (best_algo_idx != -1) {
    search_result->algo = perf_results[best_algo_idx].algo;
    search_result->time = perf_results[best_algo_idx].time;
    search_result->workspace_size = perf_results[best_algo_idx].memory;
  } else {
    VLOG(3) << "Can not find an algorithm that requires memory < "
            << ToMegaBytes(workspace_limit) << " MB";
  }
145 146
}

H
hong 已提交
147
static void SetConvMathType(const phi::GPUContext& ctx, cudnnDataType_t dtype,
148 149
                            const platform::ConvolutionDescriptor& cdesc) {
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
150
  if (ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
151
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
152 153 154 155
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
    VLOG(5) << "use cudnn_tensor_op_math";
#if CUDA_VERSION >= 11000
#if CUDNN_VERSION_MIN(8, 1, 0)
156
  } else if (ctx.GetComputeCapability() >= 80 && dtype == CUDNN_DATA_BFLOAT16) {
157
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
158 159 160
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
#endif  // CUDNN_VERSION_MIN(8, 1, 0)
  } else if (dtype == CUDNN_DATA_FLOAT && !cdesc.allow_tf32_) {
161
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
162 163 164
        cdesc.desc(), CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
  } else {
165
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
166 167 168 169 170 171
        cdesc.desc(), CUDNN_DEFAULT_MATH));
    VLOG(5) << "NOT use cudnn_tensor_op_math";
  }
#endif
}

172 173 174 175
// cuDNN convolution forward algorithm searcher, consisted of three searching
// modes, namely: deterministic, heuristic and exhaustive_search mode.
// As well as one workspace size acquirsition function with respect to
// the chosen alogrithm.
Q
qingqing01 已提交
176 177
template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
178 179
  using PerfT = cudnnConvolutionFwdAlgoPerf_t;
  using AlgoT = cudnnConvolutionFwdAlgo_t;
Q
qingqing01 已提交
180 181

  template <typename T>
182 183 184 185
  static SearchResult<AlgoT> Find(const ConvArgs& args, bool exhaustive_search,
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
Q
qingqing01 已提交
186
    auto dtype = platform::CudnnDataType<T>::type;
187
    SetConvMathType(ctx, dtype, args.cdesc);
188

189 190
    if (deterministic) {
      result = FindAlgoDeterministic();
Q
qingqing01 已提交
191
    } else {
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
      size_t key = args.GetCacheKey<T>();
      auto& cache = phi::autotune::AutoTuneCache::Instance().GetConvForward();
      if (cache.Find(key)) {
        result.algo = static_cast<AlgoT>(cache.Get(key));
      } else {
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result = FindAlgoExhaustiveSearch<T>(args, ctx);
          cache.Set(key, static_cast<int64_t>(result.algo));
        } else {
          result = FindAlgoHeuristic(args, ctx);
        }
      }
Q
qingqing01 已提交
211
    }
212 213 214 215 216
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
            << ", choose algo=" << result.algo << ", workspace="
            << ToMegaBytes(GetWorkspaceSize(args, result.algo)) << " MB";
    return result;
Q
qingqing01 已提交
217 218
  }

219 220
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionFwdAlgo_t algo) {
Q
qingqing01 已提交
221
    size_t workspace_size = 0;
222
    PADDLE_ENFORCE_GPU_SUCCESS(
223 224 225
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
226 227
    return workspace_size;
  }
228 229

 private:
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  static SearchResult<AlgoT> FindAlgoDeterministic() {
    return SearchResult<AlgoT>(static_cast<AlgoT>(1));
  }

  // Heuristic search mode, calling the cudnnGetXxxAlgorithm.
  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), kNUM_CUDNN_FWD_ALGS,
            &actual_perf_count, perf_results.data()));
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
      ChooseAlgoByWorkspace<PerfT, AlgoT>(perf_results, workspace_size_limit,
                                          &result);
#else
      VLOG(3) << "Fallback to non-v7 method to find conv algorithm "
                 "becasue the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(),
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &(result.algo)));
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(),
            CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit,
            &(result.algo)));
#endif
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(4) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
              args.handle, args.idesc.desc(), args.x->data<T>(),
              args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
              args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
              kNUM_CUDNN_FWD_ALGS, &returned_algo_count, perf_results.data(),
              workspace_ptr, max_workspace_size));
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
    workspace_handle.RunFuncSync(cudnn_find_func, max_workspace_size,
                                 UseFixedWorkspace());

    VLOG(4) << GetPerfResultString<PerfT>(
        "[Exhaustive Search] FwdAlgo Perf result", perf_results,
        returned_algo_count, workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(perf_results, workspace_size_limit,
                                        &result);

    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
319 320 321 322 323 324 325 326 327
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_FWD_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
                args.handle, args.idesc.desc(), args.wdesc.desc(),
                args.cdesc.desc(), args.odesc.desc(),
                static_cast<cudnnConvolutionFwdAlgo_t>(algo), &workspace_size);
328 329
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
330 331 332
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
333
      return max_workspace_size;
334 335 336 337
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
338 339
};

340 341 342 343 344 345
// cuDNN convolution backward data-algorithm searcher, consisting of three
// searching modes, namely: deterministic, heuristic, and exhaustive_search
// mode. Specially, there are 2 pattens of exhaustive search mode, one for
// HALF precision only, one for the rest.
// As well as one workspace size acquirsition function with
// respect to the chosen alogrithm.
Q
qingqing01 已提交
346 347
template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
348 349
  using PerfT = cudnnConvolutionBwdDataAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdDataAlgo_t;
Q
qingqing01 已提交
350 351

  template <typename T>
352 353 354 355
  static SearchResult<AlgoT> Find(const ConvArgs& args, bool exhaustive_search,
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
Q
qingqing01 已提交
356
    auto dtype = platform::CudnnDataType<T>::type;
357
    SetConvMathType(ctx, dtype, args.cdesc);
358

359 360
    if (deterministic) {
      result = FindAlgoDeterministic();
Q
qingqing01 已提交
361
    } else {
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
      size_t key = args.GetCacheKey<T>();
      auto& cache =
          phi::autotune::AutoTuneCache::Instance().GetConvBackwardData();
      if (cache.Find(key)) {
        result.algo = static_cast<AlgoT>(cache.Get(key));
      } else {
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result = FindAlgoExhaustiveSearch<T>(args, ctx);
          cache.Set(key, static_cast<int64_t>(result.algo));
        } else {
          result = FindAlgoHeuristic(args, ctx);
        }
      }
Q
qingqing01 已提交
382
    }
383 384 385 386 387
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
            << ", choose algo=" << result.algo << ", workspace="
            << ToMegaBytes(GetWorkspaceSize(args, result.algo)) << " MB";
    return result;
Q
qingqing01 已提交
388 389
  }

390 391
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdDataAlgo_t algo) {
Q
qingqing01 已提交
392
    size_t workspace_size = 0;
393
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
394
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
395 396
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
397 398
    return workspace_size;
  }
399 400

 private:
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
  static SearchResult<AlgoT> FindAlgoDeterministic() {
    return SearchResult<AlgoT>(CUDNN_CONVOLUTION_BWD_DATA_ALGO_1);
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), kNUM_CUDNN_BWD_DATA_ALGS,
            &actual_perf_count, perf_results.data()));
    result.algo = perf_results[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
    int stride_dim = args.x->dims().size() - 2;
    bool blacklist = std::any_of(args.s.begin(), args.s.begin() + stride_dim,
                                 [=](int n) { return n != 1; });
    if (blacklist && (perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                      perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
      result.algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    }
#endif
    result.workspace_size = GetWorkspaceSize(args, result.algo);
    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
      ChooseAlgoByWorkspace<PerfT, AlgoT>(perf_results, workspace_size_limit,
                                          &result);
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(),
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &(result.algo)));
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(),
            CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
            workspace_size_limit, &(result.algo)));
#endif

    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardDataAlgorithmEx(
              args.handle, args.wdesc.desc(), args.w->data<T>(),
              args.odesc.desc(), args.o->data<T>(), args.cdesc.desc(),
              args.idesc.desc(), const_cast<T*>(args.x->data<T>()),
              kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
              perf_results.data(), workspace_ptr, max_workspace_size));
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
    workspace_handle.RunFuncSync(cudnn_find_func, max_workspace_size,
                                 UseFixedWorkspace());

    VLOG(4) << GetPerfResultString<PerfT>(
        "[Exhaustive Search] BwdDataAlgo Perf result", perf_results,
        returned_algo_count, workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(perf_results, workspace_size_limit,
                                        &result);

    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
501 502 503 504 505 506 507 508 509 510
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_DATA_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
                args.handle, args.wdesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.idesc.desc(),
                static_cast<cudnnConvolutionBwdDataAlgo_t>(algo),
                &workspace_size);
511 512
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
513 514 515
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
516
      return max_workspace_size;
517 518 519 520
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
521 522
};

523 524 525 526
// cuDNN convution backward filter-algorithm searcher, consisted of three
// algorithm searching modes, namely: deterministic, heuristic, and
// exhaustive_search mode. As well as one workspace size acquirsition function
// with respect to the chosen alogrithm.
Q
qingqing01 已提交
527 528
template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
529 530
  using PerfT = cudnnConvolutionBwdFilterAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdFilterAlgo_t;
Q
qingqing01 已提交
531 532

  template <typename T>
533 534 535
  static SearchResult<AlgoT> Find(const ConvArgs& args, bool exhaustive_search,
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
536
    platform::CUDAGraphCaptureModeGuard guard;
537
    SearchResult<AlgoT> result;
Q
qingqing01 已提交
538
    auto dtype = platform::CudnnDataType<T>::type;
539
    SetConvMathType(ctx, dtype, args.cdesc);
Q
qingqing01 已提交
540

541 542
    if (deterministic) {
      result = FindAlgoDeterministic();
Q
qingqing01 已提交
543
    } else {
544 545 546 547 548 549 550 551 552 553
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
      size_t key = args.GetCacheKey<T>();
      auto& cache =
          phi::autotune::AutoTuneCache::Instance().GetConvBackwardFilter();
      if (cache.Find(key)) {
        result.algo = static_cast<AlgoT>(cache.Get(key));
554
      } else {
555 556 557 558 559 560 561 562
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result = FindAlgoExhaustiveSearch<T>(args, ctx);
          cache.Set(key, static_cast<int64_t>(result.algo));
        } else {
          result = FindAlgoHeuristic(args, ctx);
        }
563
      }
Q
qingqing01 已提交
564
    }
565 566 567 568 569
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
            << ", choose algo=" << result.algo << ", workspace="
            << ToMegaBytes(GetWorkspaceSize(args, result.algo)) << " MB";
    return result;
Q
qingqing01 已提交
570 571
  }

572 573
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdFilterAlgo_t algo) {
574
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
575
    size_t workspace_size = 0;
576
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
577 578 579 580 581
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), algo, &workspace_size));
    return workspace_size;
  }
582 583

 private:
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
  static SearchResult<AlgoT> FindAlgoDeterministic() {
    return SearchResult<AlgoT>(CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1);
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), kNUM_CUDNN_BWD_FILTER_ALGS,
            &actual_perf_count, perf_results.data()));
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
      ChooseAlgoByWorkspace<PerfT, AlgoT>(perf_results, workspace_size_limit,
                                          &result);
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(),
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &(result.algo)));
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(),
            CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
            workspace_size_limit, &(result.algo)));
#endif

    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    int returned_algo_count = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    auto workspace_handle = ctx.cudnn_workspace_handle();
    if (platform::CudnnDataType<T>::type != CUDNN_DATA_HALF) {
      size_t max_workspace_size =
          GetMaxWorkspaceSize(args, workspace_size_limit);
      VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
              << " MB";

      auto cudnn_find_func = [&](void* workspace_ptr) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithmEx(
                args.handle, args.idesc.desc(), args.x->data<T>(),
                args.odesc.desc(), args.o->data<T>(), args.cdesc.desc(),
                args.wdesc.desc(), const_cast<T*>(args.w->data<T>()),
                kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                perf_results.data(), workspace_ptr, max_workspace_size));
      };
      workspace_handle.RunFuncSync(cudnn_find_func, max_workspace_size,
                                   UseFixedWorkspace());

      VLOG(4) << GetPerfResultString<PerfT>(
          "[Exhaustive Search] BwdFilterAlgo Perf result", perf_results,
          returned_algo_count, workspace_size_limit);
      ChooseAlgoByWorkspace<PerfT, AlgoT>(perf_results, workspace_size_limit,
                                          &result);
    } else {
      int max_algos = GetAlgorithmMaxCount(args.handle);
      std::vector<PerfT> perf_results(max_algos);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithm(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(), perf_results.size(),
              &returned_algo_count, perf_results.data()));
      perf_results.resize(returned_algo_count);

      VLOG(4) << GetPerfResultString<PerfT>(
          "[Exhaustive Search] BwdFilterAlgo Perf result", perf_results,
          perf_results.size(), workspace_size_limit);
      ChooseAlgo(perf_results, workspace_size_limit, &result);
    }

    return result;
  }

  static int GetAlgorithmMaxCount(cudnnHandle_t handle) {
#if CUDNN_VERSION_MIN(7, 0, 1)
    int max_algos = 0;
    auto status =
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
            handle, &max_algos);
    if (status == gpuSuccess) {
      VLOG(5) << "[BackwardFilter] max_algos: predefined="
              << kNUM_CUDNN_BWD_FILTER_ALGS << ", actual=" << max_algos;
      return max_algos;
    }
#endif
    return kNUM_CUDNN_BWD_FILTER_ALGS;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
704 705 706 707 708 709 710 711 712 713
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_FILTER_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
                args.handle, args.idesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.wdesc.desc(),
                static_cast<cudnnConvolutionBwdFilterAlgo_t>(algo),
                &workspace_size);
714 715
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
716 717 718
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
719
      return max_workspace_size;
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
    } else {
      return workspace_size_limit;
    }
  }

  static void ChooseAlgo(const std::vector<PerfT>& perf_results,
                         size_t workspace_limit,
                         SearchResult<AlgoT>* algo_result) {
    for (size_t i = 0; i != perf_results.size(); ++i) {
      const auto& result = perf_results[i];
      if (result.status == CUDNN_STATUS_SUCCESS &&
          (result.memory <= workspace_limit)) {
        if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
            (i != perf_results.size() - 1)) {
          const auto& next_result = perf_results[i + 1];
          if (next_result.status == CUDNN_STATUS_SUCCESS &&
              next_result.algo == result.algo &&
              next_result.memory == result.memory &&
              next_result.mathType != CUDNN_TENSOR_OP_MATH &&
              next_result.time < 1.01 * result.time) {
            // Skip over this result- it's not really a Tensor Core algo.
            // Because it is only 1% performance difference.
            // Prefer to choose the next equivalent non-Tensor Core algo.
            continue;
          }
        }
        algo_result->algo = result.algo;
        algo_result->time = result.time;
        auto math_type_str = "0";
        if (result.mathType == CUDNN_TENSOR_OP_MATH) {
          math_type_str = "1";
        }
        VLOG(3) << "    choose algo: " << result.algo
                << ", TC: " << math_type_str << ", time: " << result.time
                << " ms, wksp = " << result.memory
                << ", status = " << result.status;
        break;
      }
    }
  }
Q
qingqing01 已提交
760 761 762 763
};

}  // namespace operators
}  // namespace paddle